summaryrefslogtreecommitdiff
path: root/elpa/dash-20210826.1149/dash.el
blob: 6386c5f69d65a55a03a27273e8d139fbd86a8f94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
;;; dash.el --- A modern list library for Emacs  -*- lexical-binding: t -*-

;; Copyright (C) 2012-2021 Free Software Foundation, Inc.

;; Author: Magnar Sveen <magnars@gmail.com>
;; Version: 2.19.1
;; Package-Requires: ((emacs "24"))
;; Keywords: extensions, lisp
;; Homepage: https://github.com/magnars/dash.el

;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <https://www.gnu.org/licenses/>.

;;; Commentary:

;; A modern list API for Emacs.
;;
;; See its overview at https://github.com/magnars/dash.el#functions.

;;; Code:

;; TODO: `gv' was introduced in Emacs 24.3, so remove this and all
;; calls to `defsetf' when support for earlier versions is dropped.
(eval-when-compile
  (unless (fboundp 'gv-define-setter)
    (require 'cl)))

(defgroup dash ()
  "Customize group for Dash, a modern list library."
  :group 'extensions
  :group 'lisp
  :prefix "dash-")

(defmacro !cons (car cdr)
  "Destructive: Set CDR to the cons of CAR and CDR."
  (declare (debug (form symbolp)))
  `(setq ,cdr (cons ,car ,cdr)))

(defmacro !cdr (list)
  "Destructive: Set LIST to the cdr of LIST."
  (declare (debug (symbolp)))
  `(setq ,list (cdr ,list)))

(defmacro --each (list &rest body)
  "Evaluate BODY for each element of LIST and return nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating BODY.
This is the anaphoric counterpart to `-each'."
  (declare (debug (form body)) (indent 1))
  (let ((l (make-symbol "list"))
        (i (make-symbol "i")))
    `(let ((,l ,list)
           (,i 0)
           it it-index)
       (ignore it it-index)
       (while ,l
         (setq it (pop ,l) it-index ,i ,i (1+ ,i))
         ,@body))))

(defun -each (list fn)
  "Call FN on each element of LIST.
Return nil; this function is intended for side effects.

Its anaphoric counterpart is `--each'.

For access to the current element's index in LIST, see
`-each-indexed'."
  (declare (indent 1))
  (ignore (mapc fn list)))

(defalias '--each-indexed '--each)

(defun -each-indexed (list fn)
  "Call FN on each index and element of LIST.
For each ITEM at INDEX in LIST, call (funcall FN INDEX ITEM).
Return nil; this function is intended for side effects.

See also: `-map-indexed'."
  (declare (indent 1))
  (--each list (funcall fn it-index it)))

(defmacro --each-while (list pred &rest body)
  "Evaluate BODY for each item in LIST, while PRED evaluates to non-nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating PRED or BODY.  Once
an element is reached for which PRED evaluates to nil, no further
BODY is evaluated.  The return value is always nil.
This is the anaphoric counterpart to `-each-while'."
  (declare (debug (form form body)) (indent 2))
  (let ((l (make-symbol "list"))
        (i (make-symbol "i"))
        (elt (make-symbol "elt")))
    `(let ((,l ,list)
           (,i 0)
           ,elt it it-index)
       (ignore it it-index)
       (while (and ,l (setq ,elt (pop ,l) it ,elt it-index ,i) ,pred)
         (setq it ,elt it-index ,i ,i (1+ ,i))
         ,@body))))

(defun -each-while (list pred fn)
  "Call FN on each ITEM in LIST, while (PRED ITEM) is non-nil.
Once an ITEM is reached for which PRED returns nil, FN is no
longer called.  Return nil; this function is intended for side
effects.

Its anaphoric counterpart is `--each-while'."
  (declare (indent 2))
  (--each-while list (funcall pred it) (funcall fn it)))

(defmacro --each-r (list &rest body)
  "Evaluate BODY for each element of LIST in reversed order.
Each element of LIST in turn, starting at its end, is bound to
`it' and its index within LIST to `it-index' before evaluating
BODY.  The return value is always nil.
This is the anaphoric counterpart to `-each-r'."
  (declare (debug (form body)) (indent 1))
  (let ((v (make-symbol "vector"))
        (i (make-symbol "i")))
    ;; Implementation note: building a vector is considerably faster
    ;; than building a reversed list (vector takes less memory, so
    ;; there is less GC), plus `length' comes naturally.  In-place
    ;; `nreverse' would be faster still, but BODY would be able to see
    ;; that, even if the modification was undone before we return.
    `(let* ((,v (vconcat ,list))
            (,i (length ,v))
            it it-index)
       (ignore it it-index)
       (while (> ,i 0)
         (setq ,i (1- ,i) it-index ,i it (aref ,v ,i))
         ,@body))))

(defun -each-r (list fn)
  "Call FN on each element of LIST in reversed order.
Return nil; this function is intended for side effects.

Its anaphoric counterpart is `--each-r'."
  (--each-r list (funcall fn it)))

(defmacro --each-r-while (list pred &rest body)
  "Eval BODY for each item in reversed LIST, while PRED evals to non-nil.
Each element of LIST in turn, starting at its end, is bound to
`it' and its index within LIST to `it-index' before evaluating
PRED or BODY.  Once an element is reached for which PRED
evaluates to nil, no further BODY is evaluated.  The return value
is always nil.
This is the anaphoric counterpart to `-each-r-while'."
  (declare (debug (form form body)) (indent 2))
  (let ((v (make-symbol "vector"))
        (i (make-symbol "i"))
        (elt (make-symbol "elt")))
    `(let* ((,v (vconcat ,list))
            (,i (length ,v))
            ,elt it it-index)
       (ignore it it-index)
       (while (when (> ,i 0)
                (setq ,i (1- ,i) it-index ,i)
                (setq ,elt (aref ,v ,i) it ,elt)
                ,pred)
         (setq it-index ,i it ,elt)
         ,@body))))

(defun -each-r-while (list pred fn)
  "Call FN on each ITEM in reversed LIST, while (PRED ITEM) is non-nil.
Once an ITEM is reached for which PRED returns nil, FN is no
longer called.  Return nil; this function is intended for side
effects.

Its anaphoric counterpart is `--each-r-while'."
  (--each-r-while list (funcall pred it) (funcall fn it)))

(defmacro --dotimes (num &rest body)
  "Evaluate BODY NUM times, presumably for side effects.
BODY is evaluated with the local variable `it' temporarily bound
to successive integers running from 0, inclusive, to NUM,
exclusive.  BODY is not evaluated if NUM is less than 1.
This is the anaphoric counterpart to `-dotimes'."
  (declare (debug (form body)) (indent 1))
  (let ((n (make-symbol "num"))
        (i (make-symbol "i")))
    `(let ((,n ,num)
           (,i 0)
           it)
       (ignore it)
       (while (< ,i ,n)
         (setq it ,i ,i (1+ ,i))
         ,@body))))

(defun -dotimes (num fn)
  "Call FN NUM times, presumably for side effects.
FN is called with a single argument on successive integers
running from 0, inclusive, to NUM, exclusive.  FN is not called
if NUM is less than 1.

This function's anaphoric counterpart is `--dotimes'."
  (declare (indent 1))
  (--dotimes num (funcall fn it)))

(defun -map (fn list)
  "Apply FN to each item in LIST and return the list of results.

This function's anaphoric counterpart is `--map'."
  (mapcar fn list))

(defmacro --map (form list)
  "Eval FORM for each item in LIST and return the list of results.
Each element of LIST in turn is bound to `it' before evaluating
FORM.
This is the anaphoric counterpart to `-map'."
  (declare (debug (def-form form)))
  `(mapcar (lambda (it) (ignore it) ,form) ,list))

(defmacro --reduce-from (form init list)
  "Accumulate a value by evaluating FORM across LIST.
This macro is like `--each' (which see), but it additionally
provides an accumulator variable `acc' which it successively
binds to the result of evaluating FORM for the current LIST
element before processing the next element.  For the first
element, `acc' is initialized with the result of evaluating INIT.
The return value is the resulting value of `acc'.  If LIST is
empty, FORM is not evaluated, and the return value is the result
of INIT.
This is the anaphoric counterpart to `-reduce-from'."
  (declare (debug (form form form)))
  `(let ((acc ,init))
     (--each ,list (setq acc ,form))
     acc))

(defun -reduce-from (fn init list)
  "Reduce the function FN across LIST, starting with INIT.
Return the result of applying FN to INIT and the first element of
LIST, then applying FN to that result and the second element,
etc.  If LIST is empty, return INIT without calling FN.

This function's anaphoric counterpart is `--reduce-from'.

For other folds, see also `-reduce' and `-reduce-r'."
  (--reduce-from (funcall fn acc it) init list))

(defmacro --reduce (form list)
  "Accumulate a value by evaluating FORM across LIST.
This macro is like `--reduce-from' (which see), except the first
element of LIST is taken as INIT.  Thus if LIST contains a single
item, it is returned without evaluating FORM.  If LIST is empty,
FORM is evaluated with `it' and `acc' bound to nil.
This is the anaphoric counterpart to `-reduce'."
  (declare (debug (form form)))
  (let ((lv (make-symbol "list-value")))
    `(let ((,lv ,list))
       (if ,lv
           (--reduce-from ,form (car ,lv) (cdr ,lv))
         ;; Explicit nil binding pacifies lexical "variable left uninitialized"
         ;; warning.  See issue #377 and upstream https://bugs.gnu.org/47080.
         (let ((acc nil) (it nil))
           (ignore acc it)
           ,form)))))

(defun -reduce (fn list)
  "Reduce the function FN across LIST.
Return the result of applying FN to the first two elements of
LIST, then applying FN to that result and the third element, etc.
If LIST contains a single element, return it without calling FN.
If LIST is empty, return the result of calling FN with no
arguments.

This function's anaphoric counterpart is `--reduce'.

For other folds, see also `-reduce-from' and `-reduce-r'."
  (if list
      (-reduce-from fn (car list) (cdr list))
    (funcall fn)))

(defmacro --reduce-r-from (form init list)
  "Accumulate a value by evaluating FORM across LIST in reverse.
This macro is like `--reduce-from', except it starts from the end
of LIST.
This is the anaphoric counterpart to `-reduce-r-from'."
  (declare (debug (form form form)))
  `(let ((acc ,init))
     (--each-r ,list (setq acc ,form))
     acc))

(defun -reduce-r-from (fn init list)
  "Reduce the function FN across LIST in reverse, starting with INIT.
Return the result of applying FN to the last element of LIST and
INIT, then applying FN to the second-to-last element and the
previous result of FN, etc.  That is, the first argument of FN is
the current element, and its second argument the accumulated
value.  If LIST is empty, return INIT without calling FN.

This function is like `-reduce-from' but the operation associates
from the right rather than left.  In other words, it starts from
the end of LIST and flips the arguments to FN.  Conceptually, it
is like replacing the conses in LIST with applications of FN, and
its last link with INIT, and evaluating the resulting expression.

This function's anaphoric counterpart is `--reduce-r-from'.

For other folds, see also `-reduce-r' and `-reduce'."
  (--reduce-r-from (funcall fn it acc) init list))

(defmacro --reduce-r (form list)
  "Accumulate a value by evaluating FORM across LIST in reverse order.
This macro is like `--reduce', except it starts from the end of
LIST.
This is the anaphoric counterpart to `-reduce-r'."
  (declare (debug (form form)))
  `(--reduce ,form (reverse ,list)))

(defun -reduce-r (fn list)
  "Reduce the function FN across LIST in reverse.
Return the result of applying FN to the last two elements of
LIST, then applying FN to the third-to-last element and the
previous result of FN, etc.  That is, the first argument of FN is
the current element, and its second argument the accumulated
value.  If LIST contains a single element, return it without
calling FN.  If LIST is empty, return the result of calling FN
with no arguments.

This function is like `-reduce' but the operation associates from
the right rather than left.  In other words, it starts from the
end of LIST and flips the arguments to FN.  Conceptually, it is
like replacing the conses in LIST with applications of FN,
ignoring its last link, and evaluating the resulting expression.

This function's anaphoric counterpart is `--reduce-r'.

For other folds, see also `-reduce-r-from' and `-reduce'."
  (if list
      (--reduce-r (funcall fn it acc) list)
    (funcall fn)))

(defmacro --reductions-from (form init list)
  "Return a list of FORM's intermediate reductions across LIST.
That is, a list of the intermediate values of the accumulator
when `--reduce-from' (which see) is called with the same
arguments.
This is the anaphoric counterpart to `-reductions-from'."
  (declare (debug (form form form)))
  `(nreverse
    (--reduce-from (cons (let ((acc (car acc))) (ignore acc) ,form) acc)
                   (list ,init)
                   ,list)))

(defun -reductions-from (fn init list)
  "Return a list of FN's intermediate reductions across LIST.
That is, a list of the intermediate values of the accumulator
when `-reduce-from' (which see) is called with the same
arguments.

This function's anaphoric counterpart is `--reductions-from'.

For other folds, see also `-reductions' and `-reductions-r'."
  (--reductions-from (funcall fn acc it) init list))

(defmacro --reductions (form list)
  "Return a list of FORM's intermediate reductions across LIST.
That is, a list of the intermediate values of the accumulator
when `--reduce' (which see) is called with the same arguments.
This is the anaphoric counterpart to `-reductions'."
  (declare (debug (form form)))
  (let ((lv (make-symbol "list-value")))
    `(let ((,lv ,list))
       (if ,lv
           (--reductions-from ,form (car ,lv) (cdr ,lv))
         (let (acc it)
           (ignore acc it)
           (list ,form))))))

(defun -reductions (fn list)
  "Return a list of FN's intermediate reductions across LIST.
That is, a list of the intermediate values of the accumulator
when `-reduce' (which see) is called with the same arguments.

This function's anaphoric counterpart is `--reductions'.

For other folds, see also `-reductions' and `-reductions-r'."
  (if list
      (--reductions-from (funcall fn acc it) (car list) (cdr list))
    (list (funcall fn))))

(defmacro --reductions-r-from (form init list)
  "Return a list of FORM's intermediate reductions across reversed LIST.
That is, a list of the intermediate values of the accumulator
when `--reduce-r-from' (which see) is called with the same
arguments.
This is the anaphoric counterpart to `-reductions-r-from'."
  (declare (debug (form form form)))
  `(--reduce-r-from (cons (let ((acc (car acc))) (ignore acc) ,form) acc)
                    (list ,init)
                    ,list))

(defun -reductions-r-from (fn init list)
  "Return a list of FN's intermediate reductions across reversed LIST.
That is, a list of the intermediate values of the accumulator
when `-reduce-r-from' (which see) is called with the same
arguments.

This function's anaphoric counterpart is `--reductions-r-from'.

For other folds, see also `-reductions' and `-reductions-r'."
  (--reductions-r-from (funcall fn it acc) init list))

(defmacro --reductions-r (form list)
  "Return a list of FORM's intermediate reductions across reversed LIST.
That is, a list of the intermediate values of the accumulator
when `--reduce-re' (which see) is called with the same arguments.
This is the anaphoric counterpart to `-reductions-r'."
  (declare (debug (form list)))
  (let ((lv (make-symbol "list-value")))
    `(let ((,lv (reverse ,list)))
       (if ,lv
           (--reduce-from (cons (let ((acc (car acc))) (ignore acc) ,form) acc)
                          (list (car ,lv))
                          (cdr ,lv))
         ;; Explicit nil binding pacifies lexical "variable left uninitialized"
         ;; warning.  See issue #377 and upstream https://bugs.gnu.org/47080.
         (let ((acc nil) (it nil))
           (ignore acc it)
           (list ,form))))))

(defun -reductions-r (fn list)
  "Return a list of FN's intermediate reductions across reversed LIST.
That is, a list of the intermediate values of the accumulator
when `-reduce-r' (which see) is called with the same arguments.

This function's anaphoric counterpart is `--reductions-r'.

For other folds, see also `-reductions-r-from' and
`-reductions'."
  (if list
      (--reductions-r (funcall fn it acc) list)
    (list (funcall fn))))

(defmacro --filter (form list)
  "Return a new list of the items in LIST for which FORM evals to non-nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.
This is the anaphoric counterpart to `-filter'.
For the opposite operation, see also `--remove'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (when ,form (push it ,r)))
       (nreverse ,r))))

(defun -filter (pred list)
  "Return a new list of the items in LIST for which PRED returns non-nil.

Alias: `-select'.

This function's anaphoric counterpart is `--filter'.

For similar operations, see also `-keep' and `-remove'."
  (--filter (funcall pred it) list))

(defalias '-select '-filter)
(defalias '--select '--filter)

(defmacro --remove (form list)
  "Return a new list of the items in LIST for which FORM evals to nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.
This is the anaphoric counterpart to `-remove'.
For the opposite operation, see also `--filter'."
  (declare (debug (form form)))
  `(--filter (not ,form) ,list))

(defun -remove (pred list)
  "Return a new list of the items in LIST for which PRED returns nil.

Alias: `-reject'.

This function's anaphoric counterpart is `--remove'.

For similar operations, see also `-keep' and `-filter'."
  (--remove (funcall pred it) list))

(defalias '-reject '-remove)
(defalias '--reject '--remove)

(defmacro --remove-first (form list)
  "Remove the first item from LIST for which FORM evals to non-nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.  This is a
non-destructive operation, but only the front of LIST leading up
to the removed item is a copy; the rest is LIST's original tail.
If no item is removed, then the result is a complete copy.
This is the anaphoric counterpart to `-remove-first'."
  (declare (debug (form form)))
  (let ((front (make-symbol "front"))
        (tail (make-symbol "tail")))
    `(let ((,tail ,list) ,front)
       (--each-while ,tail (not ,form)
         (push (pop ,tail) ,front))
       (if ,tail
           (nconc (nreverse ,front) (cdr ,tail))
         (nreverse ,front)))))

(defun -remove-first (pred list)
  "Remove the first item from LIST for which PRED returns non-nil.
This is a non-destructive operation, but only the front of LIST
leading up to the removed item is a copy; the rest is LIST's
original tail.  If no item is removed, then the result is a
complete copy.

Alias: `-reject-first'.

This function's anaphoric counterpart is `--remove-first'.

See also `-map-first', `-remove-item', and `-remove-last'."
  (--remove-first (funcall pred it) list))

(defalias '-reject-first '-remove-first)
(defalias '--reject-first '--remove-first)

(defmacro --remove-last (form list)
  "Remove the last item from LIST for which FORM evals to non-nil.
Each element of LIST in turn is bound to `it' before evaluating
FORM.  The result is a copy of LIST regardless of whether an
element is removed.
This is the anaphoric counterpart to `-remove-last'."
  (declare (debug (form form)))
  `(nreverse (--remove-first ,form (reverse ,list))))

(defun -remove-last (pred list)
  "Remove the last item from LIST for which PRED returns non-nil.
The result is a copy of LIST regardless of whether an element is
removed.

Alias: `-reject-last'.

This function's anaphoric counterpart is `--remove-last'.

See also `-map-last', `-remove-item', and `-remove-first'."
  (--remove-last (funcall pred it) list))

(defalias '-reject-last '-remove-last)
(defalias '--reject-last '--remove-last)

(defalias '-remove-item #'remove
  "Return a copy of LIST with all occurrences of ITEM removed.
The comparison is done with `equal'.
\n(fn ITEM LIST)")

(defmacro --keep (form list)
  "Eval FORM for each item in LIST and return the non-nil results.
Like `--filter', but returns the non-nil results of FORM instead
of the corresponding elements of LIST.  Each element of LIST in
turn is bound to `it' and its index within LIST to `it-index'
before evaluating FORM.
This is the anaphoric counterpart to `-keep'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (m (make-symbol "mapped")))
    `(let (,r)
       (--each ,list (let ((,m ,form)) (when ,m (push ,m ,r))))
       (nreverse ,r))))

(defun -keep (fn list)
  "Return a new list of the non-nil results of applying FN to each item in LIST.
Like `-filter', but returns the non-nil results of FN instead of
the corresponding elements of LIST.

Its anaphoric counterpart is `--keep'."
  (--keep (funcall fn it) list))

(defun -non-nil (list)
  "Return a copy of LIST with all nil items removed."
  (declare (pure t) (side-effect-free t))
  (--filter it list))

(defmacro --map-indexed (form list)
  "Eval FORM for each item in LIST and return the list of results.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.  This is like
`--map', but additionally makes `it-index' available to FORM.

This is the anaphoric counterpart to `-map-indexed'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list
         (push ,form ,r))
       (nreverse ,r))))

(defun -map-indexed (fn list)
  "Apply FN to each index and item in LIST and return the list of results.
This is like `-map', but FN takes two arguments: the index of the
current element within LIST, and the element itself.

This function's anaphoric counterpart is `--map-indexed'.

For a side-effecting variant, see also `-each-indexed'."
  (--map-indexed (funcall fn it-index it) list))

(defmacro --map-when (pred rep list)
  "Anaphoric form of `-map-when'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (!cons (if ,pred ,rep it) ,r))
       (nreverse ,r))))

(defun -map-when (pred rep list)
  "Return a new list where the elements in LIST that do not match the PRED function
are unchanged, and where the elements in LIST that do match the PRED function are mapped
through the REP function.

Alias: `-replace-where'

See also: `-update-at'"
  (--map-when (funcall pred it) (funcall rep it) list))

(defalias '-replace-where '-map-when)
(defalias '--replace-where '--map-when)

(defun -map-first (pred rep list)
  "Replace first item in LIST satisfying PRED with result of REP called on this item.

See also: `-map-when', `-replace-first'"
  (let (front)
    (while (and list (not (funcall pred (car list))))
      (push (car list) front)
      (!cdr list))
    (if list
        (-concat (nreverse front) (cons (funcall rep (car list)) (cdr list)))
      (nreverse front))))

(defmacro --map-first (pred rep list)
  "Anaphoric form of `-map-first'."
  (declare (debug (def-form def-form form)))
  `(-map-first (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))

(defun -map-last (pred rep list)
  "Replace last item in LIST satisfying PRED with result of REP called on this item.

See also: `-map-when', `-replace-last'"
  (nreverse (-map-first pred rep (reverse list))))

(defmacro --map-last (pred rep list)
  "Anaphoric form of `-map-last'."
  (declare (debug (def-form def-form form)))
  `(-map-last (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))

(defun -replace (old new list)
  "Replace all OLD items in LIST with NEW.

Elements are compared using `equal'.

See also: `-replace-at'"
  (declare (pure t) (side-effect-free t))
  (--map-when (equal it old) new list))

(defun -replace-first (old new list)
  "Replace the first occurrence of OLD with NEW in LIST.

Elements are compared using `equal'.

See also: `-map-first'"
  (declare (pure t) (side-effect-free t))
  (--map-first (equal old it) new list))

(defun -replace-last (old new list)
  "Replace the last occurrence of OLD with NEW in LIST.

Elements are compared using `equal'.

See also: `-map-last'"
  (declare (pure t) (side-effect-free t))
  (--map-last (equal old it) new list))

(defmacro --mapcat (form list)
  "Anaphoric form of `-mapcat'."
  (declare (debug (form form)))
  `(apply 'append (--map ,form ,list)))

(defun -mapcat (fn list)
  "Return the concatenation of the result of mapping FN over LIST.
Thus function FN should return a list."
  (--mapcat (funcall fn it) list))

(defmacro --iterate (form init n)
  "Anaphoric version of `-iterate'."
  (declare (debug (form form form)))
  (let ((res (make-symbol "result"))
        (len (make-symbol "n")))
    `(let ((,len ,n))
       (when (> ,len 0)
         (let* ((it ,init)
                (,res (list it)))
           (dotimes (_ (1- ,len))
             (push (setq it ,form) ,res))
           (nreverse ,res))))))

(defun -iterate (fun init n)
  "Return a list of iterated applications of FUN to INIT.

This means a list of the form:

  (INIT (FUN INIT) (FUN (FUN INIT)) ...)

N is the length of the returned list."
  (--iterate (funcall fun it) init n))

(defun -flatten (l)
  "Take a nested list L and return its contents as a single, flat list.

Note that because `nil' represents a list of zero elements (an
empty list), any mention of nil in L will disappear after
flattening.  If you need to preserve nils, consider `-flatten-n'
or map them to some unique symbol and then map them back.

Conses of two atoms are considered \"terminals\", that is, they
aren't flattened further.

See also: `-flatten-n'"
  (declare (pure t) (side-effect-free t))
  (if (and (listp l) (listp (cdr l)))
      (-mapcat '-flatten l)
    (list l)))

(defun -flatten-n (num list)
  "Flatten NUM levels of a nested LIST.

See also: `-flatten'"
  (declare (pure t) (side-effect-free t))
  (dotimes (_ num)
    (setq list (apply #'append (mapcar #'-list list))))
  list)

(defun -concat (&rest lists)
  "Return a new list with the concatenation of the elements in the supplied LISTS."
  (declare (pure t) (side-effect-free t))
  (apply 'append lists))

(defalias '-copy 'copy-sequence
  "Create a shallow copy of LIST.

\(fn LIST)")

(defun -splice (pred fun list)
  "Splice lists generated by FUN in place of elements matching PRED in LIST.

FUN takes the element matching PRED as input.

This function can be used as replacement for `,@' in case you
need to splice several lists at marked positions (for example
with keywords).

See also: `-splice-list', `-insert-at'"
  (let (r)
    (--each list
      (if (funcall pred it)
          (let ((new (funcall fun it)))
            (--each new (!cons it r)))
        (!cons it r)))
    (nreverse r)))

(defmacro --splice (pred form list)
  "Anaphoric form of `-splice'."
  (declare (debug (def-form def-form form)))
  `(-splice (lambda (it) ,pred) (lambda (it) ,form) ,list))

(defun -splice-list (pred new-list list)
  "Splice NEW-LIST in place of elements matching PRED in LIST.

See also: `-splice', `-insert-at'"
  (-splice pred (lambda (_) new-list) list))

(defmacro --splice-list (pred new-list list)
  "Anaphoric form of `-splice-list'."
  (declare (debug (def-form form form)))
  `(-splice-list (lambda (it) ,pred) ,new-list ,list))

(defun -cons* (&rest args)
  "Make a new list from the elements of ARGS.
The last 2 elements of ARGS are used as the final cons of the
result, so if the final element of ARGS is not a list, the result
is a dotted list.  With no ARGS, return nil."
  (declare (pure t) (side-effect-free t))
  (let* ((len (length args))
         (tail (nthcdr (- len 2) args))
         (last (cdr tail)))
    (if (null last)
        (car args)
      (setcdr tail (car last))
      args)))

(defun -snoc (list elem &rest elements)
  "Append ELEM to the end of the list.

This is like `cons', but operates on the end of list.

If ELEMENTS is non nil, append these to the list as well."
  (-concat list (list elem) elements))

(defmacro --first (form list)
  "Return the first item in LIST for which FORM evals to non-nil.
Return nil if no such element is found.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.
This is the anaphoric counterpart to `-first'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (or (not ,form)
                               (ignore (setq ,n it))))
       ,n)))

(defun -first (pred list)
  "Return the first item in LIST for which PRED returns non-nil.
Return nil if no such element is found.
To get the first item in the list no questions asked, use `car'.

Alias: `-find'.

This function's anaphoric counterpart is `--first'."
  (--first (funcall pred it) list))

(defalias '-find '-first)
(defalias '--find '--first)

(defmacro --some (form list)
  "Return non-nil if FORM evals to non-nil for at least one item in LIST.
If so, return the first such result of FORM.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.
This is the anaphoric counterpart to `-some'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (not (setq ,n ,form)))
       ,n)))

(defun -some (pred list)
  "Return (PRED x) for the first LIST item where (PRED x) is non-nil, else nil.

Alias: `-any'.

This function's anaphoric counterpart is `--some'."
  (--some (funcall pred it) list))

(defalias '-any '-some)
(defalias '--any '--some)

(defmacro --every (form list)
  "Return non-nil if FORM evals to non-nil for all items in LIST.
If so, return the last such result of FORM.  Otherwise, once an
item is reached for which FORM yields nil, return nil without
evaluating FORM for any further LIST elements.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.

This macro is like `--every-p', but on success returns the last
non-nil result of FORM instead of just t.

This is the anaphoric counterpart to `-every'."
  (declare (debug (form form)))
  (let ((a (make-symbol "all")))
    `(let ((,a t))
       (--each-while ,list (setq ,a ,form))
       ,a)))

(defun -every (pred list)
  "Return non-nil if PRED returns non-nil for all items in LIST.
If so, return the last such result of PRED.  Otherwise, once an
item is reached for which PRED returns nil, return nil without
calling PRED on any further LIST elements.

This function is like `-every-p', but on success returns the last
non-nil result of PRED instead of just t.

This function's anaphoric counterpart is `--every'."
  (--every (funcall pred it) list))

(defmacro --last (form list)
  "Anaphoric form of `-last'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each ,list
         (when ,form (setq ,n it)))
       ,n)))

(defun -last (pred list)
  "Return the last x in LIST where (PRED x) is non-nil, else nil."
  (--last (funcall pred it) list))

(defalias '-first-item 'car
  "Return the first item of LIST, or nil on an empty list.

See also: `-second-item', `-last-item'.

\(fn LIST)")

;; Ensure that calls to `-first-item' are compiled to a single opcode,
;; just like `car'.
(put '-first-item 'byte-opcode 'byte-car)
(put '-first-item 'byte-compile 'byte-compile-one-arg)

(defalias '-second-item 'cadr
  "Return the second item of LIST, or nil if LIST is too short.

See also: `-third-item'.

\(fn LIST)")

(defalias '-third-item
  (if (fboundp 'caddr)
      #'caddr
    (lambda (list) (car (cddr list))))
  "Return the third item of LIST, or nil if LIST is too short.

See also: `-fourth-item'.

\(fn LIST)")

(defun -fourth-item (list)
  "Return the fourth item of LIST, or nil if LIST is too short.

See also: `-fifth-item'."
  (declare (pure t) (side-effect-free t))
  (car (cdr (cdr (cdr list)))))

(defun -fifth-item (list)
  "Return the fifth item of LIST, or nil if LIST is too short.

See also: `-last-item'."
  (declare (pure t) (side-effect-free t))
  (car (cdr (cdr (cdr (cdr list))))))

(defun -last-item (list)
  "Return the last item of LIST, or nil on an empty list."
  (declare (pure t) (side-effect-free t))
  (car (last list)))

;; Use `with-no-warnings' to suppress unbound `-last-item' or
;; undefined `gv--defsetter' warnings arising from both
;; `gv-define-setter' and `defsetf' in certain Emacs versions.
(with-no-warnings
  (if (fboundp 'gv-define-setter)
      (gv-define-setter -last-item (val x) `(setcar (last ,x) ,val))
    (defsetf -last-item (x) (val) `(setcar (last ,x) ,val))))

(defun -butlast (list)
  "Return a list of all items in list except for the last."
  ;; no alias as we don't want magic optional argument
  (declare (pure t) (side-effect-free t))
  (butlast list))

(defmacro --count (pred list)
  "Anaphoric form of `-count'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let ((,r 0))
       (--each ,list (when ,pred (setq ,r (1+ ,r))))
       ,r)))

(defun -count (pred list)
  "Counts the number of items in LIST where (PRED item) is non-nil."
  (--count (funcall pred it) list))

(defun ---truthy? (obj)
  "Return OBJ as a boolean value (t or nil)."
  (declare (pure t) (side-effect-free t))
  (and obj t))

(defmacro --any? (form list)
  "Anaphoric form of `-any?'."
  (declare (debug (form form)))
  `(and (--some ,form ,list) t))

(defun -any? (pred list)
  "Return t if (PRED x) is non-nil for any x in LIST, else nil.

Alias: `-any-p', `-some?', `-some-p'"
  (--any? (funcall pred it) list))

(defalias '-some? '-any?)
(defalias '--some? '--any?)
(defalias '-any-p '-any?)
(defalias '--any-p '--any?)
(defalias '-some-p '-any?)
(defalias '--some-p '--any?)

(defmacro --all? (form list)
  "Return t if FORM evals to non-nil for all items in LIST.
Otherwise, once an item is reached for which FORM yields nil,
return nil without evaluating FORM for any further LIST elements.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.

The similar macro `--every' is more widely useful, since it
returns the last non-nil result of FORM instead of just t on
success.

Alias: `--all-p', `--every-p', `--every?'.

This is the anaphoric counterpart to `-all?'."
  (declare (debug (form form)))
  `(and (--every ,form ,list) t))

(defun -all? (pred list)
  "Return t if (PRED X) is non-nil for all X in LIST, else nil.
In the latter case, stop after the first X for which (PRED X) is
nil, without calling PRED on any subsequent elements of LIST.

The similar function `-every' is more widely useful, since it
returns the last non-nil result of PRED instead of just t on
success.

Alias: `-all-p', `-every-p', `-every?'.

This function's anaphoric counterpart is `--all?'."
  (--all? (funcall pred it) list))

(defalias '-every? '-all?)
(defalias '--every? '--all?)
(defalias '-all-p '-all?)
(defalias '--all-p '--all?)
(defalias '-every-p '-all?)
(defalias '--every-p '--all?)

(defmacro --none? (form list)
  "Anaphoric form of `-none?'."
  (declare (debug (form form)))
  `(--all? (not ,form) ,list))

(defun -none? (pred list)
  "Return t if (PRED x) is nil for all x in LIST, else nil.

Alias: `-none-p'"
  (--none? (funcall pred it) list))

(defalias '-none-p '-none?)
(defalias '--none-p '--none?)

(defmacro --only-some? (form list)
  "Anaphoric form of `-only-some?'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each-while ,list (not (and ,y ,n))
         (if ,form (setq ,y t) (setq ,n t)))
       (---truthy? (and ,y ,n)))))

(defun -only-some? (pred list)
  "Return `t` if at least one item of LIST matches PRED and at least one item of LIST does not match PRED.
Return `nil` both if all items match the predicate or if none of the items match the predicate.

Alias: `-only-some-p'"
  (--only-some? (funcall pred it) list))

(defalias '-only-some-p '-only-some?)
(defalias '--only-some-p '--only-some?)

(defun -slice (list from &optional to step)
  "Return copy of LIST, starting from index FROM to index TO.

FROM or TO may be negative.  These values are then interpreted
modulo the length of the list.

If STEP is a number, only each STEPth item in the resulting
section is returned.  Defaults to 1."
  (declare (pure t) (side-effect-free t))
  (let ((length (length list))
        (new-list nil))
    ;; to defaults to the end of the list
    (setq to (or to length))
    (setq step (or step 1))
    ;; handle negative indices
    (when (< from 0)
      (setq from (mod from length)))
    (when (< to 0)
      (setq to (mod to length)))

    ;; iterate through the list, keeping the elements we want
    (--each-while list (< it-index to)
      (when (and (>= it-index from)
                 (= (mod (- from it-index) step) 0))
        (push it new-list)))
    (nreverse new-list)))

(defmacro --take-while (form list)
  "Take successive items from LIST for which FORM evals to non-nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.  Return a new
list of the successive elements from the start of LIST for which
FORM evaluates to non-nil.
This is the anaphoric counterpart to `-take-while'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each-while ,list ,form (push it ,r))
       (nreverse ,r))))

(defun -take-while (pred list)
  "Take successive items from LIST for which PRED returns non-nil.
PRED is a function of one argument.  Return a new list of the
successive elements from the start of LIST for which PRED returns
non-nil.

This function's anaphoric counterpart is `--take-while'.

For another variant, see also `-drop-while'."
  (--take-while (funcall pred it) list))

(defmacro --drop-while (form list)
  "Drop successive items from LIST for which FORM evals to non-nil.
Each element of LIST in turn is bound to `it' and its index
within LIST to `it-index' before evaluating FORM.  Return the
tail (not a copy) of LIST starting from its first element for
which FORM evaluates to nil.
This is the anaphoric counterpart to `-drop-while'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list")))
    `(let ((,l ,list))
       (--each-while ,l ,form (pop ,l))
       ,l)))

(defun -drop-while (pred list)
  "Drop successive items from LIST for which PRED returns non-nil.
PRED is a function of one argument.  Return the tail (not a copy)
of LIST starting from its first element for which PRED returns
nil.

This function's anaphoric counterpart is `--drop-while'.

For another variant, see also `-take-while'."
  (--drop-while (funcall pred it) list))

(defun -take (n list)
  "Return a copy of the first N items in LIST.
Return a copy of LIST if it contains N items or fewer.
Return nil if N is zero or less.

See also: `-take-last'."
  (declare (pure t) (side-effect-free t))
  (--take-while (< it-index n) list))

(defun -take-last (n list)
  "Return a copy of the last N items of LIST in order.
Return a copy of LIST if it contains N items or fewer.
Return nil if N is zero or less.

See also: `-take'."
  (declare (pure t) (side-effect-free t))
  (copy-sequence (last list n)))

(defalias '-drop #'nthcdr
  "Return the tail (not a copy) of LIST without the first N items.
Return nil if LIST contains N items or fewer.
Return LIST if N is zero or less.

For another variant, see also `-drop-last'.
\n(fn N LIST)")

(defun -drop-last (n list)
  "Return a copy of LIST without its last N items.
Return a copy of LIST if N is zero or less.
Return nil if LIST contains N items or fewer.

See also: `-drop'."
  (declare (pure t) (side-effect-free t))
  (nbutlast (copy-sequence list) n))

(defun -split-at (n list)
  "Split LIST into two sublists after the Nth element.
The result is a list of two elements (TAKE DROP) where TAKE is a
new list of the first N elements of LIST, and DROP is the
remaining elements of LIST (not a copy).  TAKE and DROP are like
the results of `-take' and `-drop', respectively, but the split
is done in a single list traversal."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (--each-while list (< it-index n)
      (push (pop list) result))
    (list (nreverse result) list)))

(defun -rotate (n list)
  "Rotate LIST N places to the right (left if N is negative).
The time complexity is O(n)."
  (declare (pure t) (side-effect-free t))
  (cond ((null list) ())
        ((zerop n) (copy-sequence list))
        ((let* ((len (length list))
                (n-mod-len (mod n len))
                (new-tail-len (- len n-mod-len)))
           (append (nthcdr new-tail-len list) (-take new-tail-len list))))))

(defun -insert-at (n x list)
  "Return a list with X inserted into LIST at position N.

See also: `-splice', `-splice-list'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cadr split-list)))))

(defun -replace-at (n x list)
  "Return a list with element at Nth position in LIST replaced with X.

See also: `-replace'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cdr (cadr split-list))))))

(defun -update-at (n func list)
  "Return a list with element at Nth position in LIST replaced with `(func (nth n list))`.

See also: `-map-when'"
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons (funcall func (car (cadr split-list))) (cdr (cadr split-list))))))

(defmacro --update-at (n form list)
  "Anaphoric version of `-update-at'."
  (declare (debug (form def-form form)))
  `(-update-at ,n (lambda (it) ,form) ,list))

(defun -remove-at (n list)
  "Return a list with element at Nth position in LIST removed.

See also: `-remove-at-indices', `-remove'"
  (declare (pure t) (side-effect-free t))
  (-remove-at-indices (list n) list))

(defun -remove-at-indices (indices list)
  "Return a list whose elements are elements from LIST without
elements selected as `(nth i list)` for all i
from INDICES.

See also: `-remove-at', `-remove'"
  (declare (pure t) (side-effect-free t))
  (let* ((indices (-sort '< indices))
         (diffs (cons (car indices) (-map '1- (-zip-with '- (cdr indices) indices))))
         r)
    (--each diffs
      (let ((split (-split-at it list)))
        (!cons (car split) r)
        (setq list (cdr (cadr split)))))
    (!cons list r)
    (apply '-concat (nreverse r))))

(defmacro --split-with (pred list)
  "Anaphoric form of `-split-with'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list"))
        (r (make-symbol "result"))
        (c (make-symbol "continue")))
    `(let ((,l ,list)
           (,r nil)
           (,c t))
       (while (and ,l ,c)
         (let ((it (car ,l)))
           (if (not ,pred)
               (setq ,c nil)
             (!cons it ,r)
             (!cdr ,l))))
       (list (nreverse ,r) ,l))))

(defun -split-with (pred list)
  "Return a list of ((-take-while PRED LIST) (-drop-while PRED LIST)), in no more than one pass through the list."
  (--split-with (funcall pred it) list))

(defmacro -split-on (item list)
  "Split the LIST each time ITEM is found.

Unlike `-partition-by', the ITEM is discarded from the results.
Empty lists are also removed from the result.

Comparison is done by `equal'.

See also `-split-when'"
  (declare (debug (def-form form)))
  `(-split-when (lambda (it) (equal it ,item)) ,list))

(defmacro --split-when (form list)
  "Anaphoric version of `-split-when'."
  (declare (debug (def-form form)))
  `(-split-when (lambda (it) ,form) ,list))

(defun -split-when (fn list)
  "Split the LIST on each element where FN returns non-nil.

Unlike `-partition-by', the \"matched\" element is discarded from
the results.  Empty lists are also removed from the result.

This function can be thought of as a generalization of
`split-string'."
  (let (r s)
    (while list
      (if (not (funcall fn (car list)))
          (push (car list) s)
        (when s (push (nreverse s) r))
        (setq s nil))
      (!cdr list))
    (when s (push (nreverse s) r))
    (nreverse r)))

(defmacro --separate (form list)
  "Anaphoric form of `-separate'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each ,list (if ,form (!cons it ,y) (!cons it ,n)))
       (list (nreverse ,y) (nreverse ,n)))))

(defun -separate (pred list)
  "Return a list of ((-filter PRED LIST) (-remove PRED LIST)), in one pass through the list."
  (--separate (funcall pred it) list))

(defun dash--partition-all-in-steps-reversed (n step list)
  "Used by `-partition-all-in-steps' and `-partition-in-steps'."
  (when (< step 1)
    (signal 'wrong-type-argument
            `("Step size < 1 results in juicy infinite loops" ,step)))
  (let (result)
    (while list
      (push (-take n list) result)
      (setq list (nthcdr step list)))
    result))

(defun -partition-all-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
The last groups may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (nreverse (dash--partition-all-in-steps-reversed n step list)))

(defun -partition-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (let ((result (dash--partition-all-in-steps-reversed n step list)))
    (while (and result (< (length (car result)) n))
      (!cdr result))
    (nreverse result)))

(defun -partition-all (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
The last group may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (-partition-all-in-steps n n list))

(defun -partition (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (-partition-in-steps n n list))

(defmacro --partition-by (form list)
  "Anaphoric form of `-partition-by'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (v (make-symbol "value"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,v ,form)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (unless (equal ,v ,n)
                 (!cons (nreverse ,s) ,r)
                 (setq ,s nil)
                 (setq ,v ,n))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))

(defun -partition-by (fn list)
  "Apply FN to each item in LIST, splitting it each time FN returns a new value."
  (--partition-by (funcall fn it) list))

(defmacro --partition-by-header (form list)
  "Anaphoric form of `-partition-by-header'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (h (make-symbol "header-value"))
        (b (make-symbol "seen-body?"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,h ,form)
                (,b nil)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (if (equal ,h ,n)
                   (when ,b
                     (!cons (nreverse ,s) ,r)
                     (setq ,s nil)
                     (setq ,b nil))
                 (setq ,b t))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))

(defun -partition-by-header (fn list)
  "Apply FN to the first item in LIST. That is the header
value. Apply FN to each item in LIST, splitting it each time FN
returns the header value, but only after seeing at least one
other value (the body)."
  (--partition-by-header (funcall fn it) list))

(defmacro --partition-after-pred (form list)
  "Partition LIST after each element for which FORM evaluates to non-nil.
Each element of LIST in turn is bound to `it' before evaluating
FORM.

This is the anaphoric counterpart to `-partition-after-pred'."
  (let ((l (make-symbol "list"))
        (r (make-symbol "result"))
        (s (make-symbol "sublist")))
    `(let ((,l ,list) ,r ,s)
       (when ,l
         (--each ,l
           (push it ,s)
           (when ,form
             (push (nreverse ,s) ,r)
             (setq ,s ())))
         (when ,s
           (push (nreverse ,s) ,r))
         (nreverse ,r)))))

(defun -partition-after-pred (pred list)
  "Partition LIST after each element for which PRED returns non-nil.

This function's anaphoric counterpart is `--partition-after-pred'."
  (--partition-after-pred (funcall pred it) list))

(defun -partition-before-pred (pred list)
  "Partition directly before each time PRED is true on an element of LIST."
  (nreverse (-map #'reverse
                  (-partition-after-pred pred (reverse list)))))

(defun -partition-after-item (item list)
  "Partition directly after each time ITEM appears in LIST."
  (-partition-after-pred (lambda (ele) (equal ele item))
                         list))

(defun -partition-before-item (item list)
  "Partition directly before each time ITEM appears in LIST."
  (-partition-before-pred (lambda (ele) (equal ele item))
                          list))

(defmacro --group-by (form list)
  "Anaphoric form of `-group-by'."
  (declare (debug t))
  (let ((n (make-symbol "n"))
        (k (make-symbol "k"))
        (grp (make-symbol "grp")))
    `(nreverse
      (-map
       (lambda (,n)
         (cons (car ,n)
               (nreverse (cdr ,n))))
       (--reduce-from
        (let* ((,k (,@form))
               (,grp (assoc ,k acc)))
          (if ,grp
              (setcdr ,grp (cons it (cdr ,grp)))
            (push
             (list ,k it)
             acc))
          acc)
        nil ,list)))))

(defun -group-by (fn list)
  "Separate LIST into an alist whose keys are FN applied to the
elements of LIST.  Keys are compared by `equal'."
  (--group-by (funcall fn it) list))

(defun -interpose (sep list)
  "Return a new list of all elements in LIST separated by SEP."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (when list
      (!cons (car list) result)
      (!cdr list))
    (while list
      (setq result (cons (car list) (cons sep result)))
      (!cdr list))
    (nreverse result)))

(defun -interleave (&rest lists)
  "Return a new list of the first item in each list, then the second etc."
  (declare (pure t) (side-effect-free t))
  (when lists
    (let (result)
      (while (-none? 'null lists)
        (--each lists (!cons (car it) result))
        (setq lists (-map 'cdr lists)))
      (nreverse result))))

(defmacro --zip-with (form list1 list2)
  "Anaphoric form of `-zip-with'.

The elements in list1 are bound as symbol `it', the elements in list2 as symbol `other'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result"))
        (l1 (make-symbol "list1"))
        (l2 (make-symbol "list2")))
    `(let ((,r nil)
           (,l1 ,list1)
           (,l2 ,list2))
       (while (and ,l1 ,l2)
         (let ((it (car ,l1))
               (other (car ,l2)))
           (!cons ,form ,r)
           (!cdr ,l1)
           (!cdr ,l2)))
       (nreverse ,r))))

(defun -zip-with (fn list1 list2)
  "Zip the two lists LIST1 and LIST2 using a function FN.  This
function is applied pairwise taking as first argument element of
LIST1 and as second argument element of LIST2 at corresponding
position.

The anaphoric form `--zip-with' binds the elements from LIST1 as symbol `it',
and the elements from LIST2 as symbol `other'."
  (--zip-with (funcall fn it other) list1 list2))

(defun -zip-lists (&rest lists)
  "Zip LISTS together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.

The return value is always list of lists, which is a difference
from `-zip-pair' which returns a cons-cell in case two input
lists are provided.

See also: `-zip'"
  (declare (pure t) (side-effect-free t))
  (when lists
    (let (results)
      (while (-none? 'null lists)
        (setq results (cons (mapcar 'car lists) results))
        (setq lists (mapcar 'cdr lists)))
      (nreverse results))))

(defun -zip (&rest lists)
  "Zip LISTS together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.

If two lists are provided as arguments, return the groupings as a list
of cons cells. Otherwise, return the groupings as a list of lists.

Use `-zip-lists' if you need the return value to always be a list
of lists.

Alias: `-zip-pair'

See also: `-zip-lists'"
  (declare (pure t) (side-effect-free t))
  (when lists
    (let (results)
      (while (-none? 'null lists)
        (setq results (cons (mapcar 'car lists) results))
        (setq lists (mapcar 'cdr lists)))
      (setq results (nreverse results))
      (if (= (length lists) 2)
          ;; to support backward compatibility, return
          ;; a cons cell if two lists were provided
          (--map (cons (car it) (cadr it)) results)
        results))))

(defalias '-zip-pair '-zip)

(defun -zip-fill (fill-value &rest lists)
  "Zip LISTS, with FILL-VALUE padded onto the shorter lists. The
lengths of the returned groupings are equal to the length of the
longest input list."
  (declare (pure t) (side-effect-free t))
  (apply '-zip (apply '-pad (cons fill-value lists))))

(defun -unzip (lists)
  "Unzip LISTS.

This works just like `-zip' but takes a list of lists instead of
a variable number of arguments, such that

  (-unzip (-zip L1 L2 L3 ...))

is identity (given that the lists are the same length).

Note in particular that calling this on a list of two lists will
return a list of cons-cells such that the above identity works.

See also: `-zip'"
  (apply '-zip lists))

(defun -cycle (list)
  "Return an infinite circular copy of LIST.
The returned list cycles through the elements of LIST and repeats
from the beginning."
  (declare (pure t) (side-effect-free t))
  ;; Also works with sequences that aren't lists.
  (let ((newlist (append list ())))
    (nconc newlist newlist)))

(defun -pad (fill-value &rest lists)
  "Appends FILL-VALUE to the end of each list in LISTS such that they
will all have the same length."
  (let* ((annotations (-annotate 'length lists))
         (n (-max (-map 'car annotations))))
    (--map (append (cdr it) (-repeat (- n (car it)) fill-value)) annotations)))

(defun -annotate (fn list)
  "Return a list of cons cells where each cell is FN applied to each
element of LIST paired with the unmodified element of LIST."
  (-zip (-map fn list) list))

(defmacro --annotate (form list)
  "Anaphoric version of `-annotate'."
  (declare (debug (def-form form)))
  `(-annotate (lambda (it) ,form) ,list))

(defun dash--table-carry (lists restore-lists &optional re)
  "Helper for `-table' and `-table-flat'.

If a list overflows, carry to the right and reset the list."
  (while (not (or (car lists)
                  (equal lists '(nil))))
    (setcar lists (car restore-lists))
    (pop (cadr lists))
    (!cdr lists)
    (!cdr restore-lists)
    (when re
      (push (nreverse (car re)) (cadr re))
      (setcar re nil)
      (!cdr re))))

(defun -table (fn &rest lists)
  "Compute outer product of LISTS using function FN.

The function FN should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The dimension of the result is (length lists).

See also: `-table-flat'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        (re (make-list (length lists) nil)))
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item (car re))
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists re)))
    (nreverse (car (last re)))))

(defun -table-flat (fn &rest lists)
  "Compute flat outer product of LISTS using function FN.

The function FN should have the same arity as the number of
supplied lists.

The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The results are flattened, ignoring the tensor structure
of the result.  This is equivalent to calling:

  (-flatten-n (1- (length lists)) (apply \\='-table fn lists))

but the implementation here is much more efficient.

See also: `-flatten-n', `-table'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        re)
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item re)
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists)))
    (nreverse re)))

(defun -elem-index (elem list)
  "Return the index of the first element in the given LIST which
is equal to the query element ELEM, or nil if there is no
such element."
  (declare (pure t) (side-effect-free t))
  (car (-elem-indices elem list)))

(defun -elem-indices (elem list)
  "Return the indices of all elements in LIST equal to the query
element ELEM, in ascending order."
  (declare (pure t) (side-effect-free t))
  (-find-indices (-partial 'equal elem) list))

(defun -find-indices (pred list)
  "Return the indices of all elements in LIST satisfying the
predicate PRED, in ascending order."
  (apply 'append (--map-indexed (when (funcall pred it) (list it-index)) list)))

(defmacro --find-indices (form list)
  "Anaphoric version of `-find-indices'."
  (declare (debug (def-form form)))
  `(-find-indices (lambda (it) ,form) ,list))

(defun -find-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
first element in the list satisfying the predicate, or nil if
there is no such element.

See also `-first'."
  (car (-find-indices pred list)))

(defmacro --find-index (form list)
  "Anaphoric version of `-find-index'."
  (declare (debug (def-form form)))
  `(-find-index (lambda (it) ,form) ,list))

(defun -find-last-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
last element in the list satisfying the predicate, or nil if
there is no such element.

See also `-last'."
  (-last-item (-find-indices pred list)))

(defmacro --find-last-index (form list)
  "Anaphoric version of `-find-last-index'."
  (declare (debug (def-form form)))
  `(-find-last-index (lambda (it) ,form) ,list))

(defun -select-by-indices (indices list)
  "Return a list whose elements are elements from LIST selected
as `(nth i list)` for all i from INDICES."
  (declare (pure t) (side-effect-free t))
  (let (r)
    (--each indices
      (!cons (nth it list) r))
    (nreverse r)))

(defun -select-columns (columns table)
  "Select COLUMNS from TABLE.

TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.

Each row is transformed such that only the specified COLUMNS are
selected.

See also: `-select-column', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--map (-select-by-indices columns it) table))

(defun -select-column (column table)
  "Select COLUMN from TABLE.

TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.

The single selected column is returned as a list.

See also: `-select-columns', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--mapcat (-select-by-indices (list column) it) table))

(defmacro -> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the second item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
second item in second form, etc."
  (declare (debug (form &rest [&or symbolp (sexp &rest form)])))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,(car form) ,x ,@(cdr form))
                  (list form x)))
   (:else `(-> (-> ,x ,form) ,@more))))

(defmacro ->> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the last item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
last item in second form, etc."
  (declare (debug ->))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,@form ,x)
                  (list form x)))
   (:else `(->> (->> ,x ,form) ,@more))))

(defmacro --> (x &rest forms)
  "Starting with the value of X, thread each expression through FORMS.

Insert X at the position signified by the symbol `it' in the first
form.  If there are more forms, insert the first form at the position
signified by `it' in in second form, etc."
  (declare (debug (form body)))
  `(-as-> ,x it ,@forms))

(defmacro -as-> (value variable &rest forms)
  "Starting with VALUE, thread VARIABLE through FORMS.

In the first form, bind VARIABLE to VALUE.  In the second form, bind
VARIABLE to the result of the first form, and so forth."
  (declare (debug (form symbolp body)))
  (if (null forms)
      `,value
    `(let ((,variable ,value))
       (-as-> ,(if (symbolp (car forms))
                   (list (car forms) variable)
                 (car forms))
              ,variable
              ,@(cdr forms)))))

(defmacro -some-> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->)
           (indent 1))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some-> (-when-let (,result ,x)
                  (-> ,result ,form))
         ,@more))))

(defmacro -some->> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->>'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->)
           (indent 1))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some->> (-when-let (,result ,x)
                   (->> ,result ,form))
         ,@more))))

(defmacro -some--> (expr &rest forms)
  "Thread EXPR through FORMS via `-->', while the result is non-nil.
When EXPR evaluates to non-nil, thread the result through the
first of FORMS, and when that result is non-nil, thread it
through the next form, etc."
  (declare (debug (form &rest &or symbolp consp)) (indent 1))
  (if (null forms) expr
    (let ((result (make-symbol "result")))
      `(-some--> (-when-let (,result ,expr)
                   (--> ,result ,(car forms)))
         ,@(cdr forms)))))

(defmacro -doto (init &rest forms)
  "Evaluate INIT and pass it as argument to FORMS with `->'.
The RESULT of evaluating INIT is threaded through each of FORMS
individually using `->', which see.  The return value is RESULT,
which FORMS may have modified by side effect."
  (declare (debug (form &rest &or symbolp consp)) (indent 1))
  (let ((retval (make-symbol "result")))
    `(let ((,retval ,init))
       ,@(mapcar (lambda (form) `(-> ,retval ,form)) forms)
       ,retval)))

(defmacro --doto (init &rest forms)
  "Anaphoric form of `-doto'.
This just evaluates INIT, binds the result to `it', evaluates
FORMS, and returns the final value of `it'.
Note: `it' need not be used in each form."
  (declare (debug (form body)) (indent 1))
  `(let ((it ,init))
     ,@forms
     it))

(defun -grade-up (comparator list)
  "Grade elements of LIST using COMPARATOR relation.
This yields a permutation vector such that applying this
permutation to LIST sorts it in ascending order."
  (->> (--map-indexed (cons it it-index) list)
       (-sort (lambda (it other) (funcall comparator (car it) (car other))))
       (mapcar #'cdr)))

(defun -grade-down (comparator list)
  "Grade elements of LIST using COMPARATOR relation.
This yields a permutation vector such that applying this
permutation to LIST sorts it in descending order."
  (->> (--map-indexed (cons it it-index) list)
       (-sort (lambda (it other) (funcall comparator (car other) (car it))))
       (mapcar #'cdr)))

(defvar dash--source-counter 0
  "Monotonic counter for generated symbols.")

(defun dash--match-make-source-symbol ()
  "Generate a new dash-source symbol.

All returned symbols are guaranteed to be unique."
  (prog1 (make-symbol (format "--dash-source-%d--" dash--source-counter))
    (setq dash--source-counter (1+ dash--source-counter))))

(defun dash--match-ignore-place-p (symbol)
  "Return non-nil if SYMBOL is a symbol and starts with _."
  (and (symbolp symbol)
       (eq (aref (symbol-name symbol) 0) ?_)))

(defun dash--match-cons-skip-cdr (skip-cdr source)
  "Helper function generating idiomatic shifting code."
  (cond
   ((= skip-cdr 0)
    `(pop ,source))
   (t
    `(prog1 ,(dash--match-cons-get-car skip-cdr source)
       (setq ,source ,(dash--match-cons-get-cdr (1+ skip-cdr) source))))))

(defun dash--match-cons-get-car (skip-cdr source)
  "Helper function generating idiomatic code to get nth car."
  (cond
   ((= skip-cdr 0)
    `(car ,source))
   ((= skip-cdr 1)
    `(cadr ,source))
   (t
    `(nth ,skip-cdr ,source))))

(defun dash--match-cons-get-cdr (skip-cdr source)
  "Helper function generating idiomatic code to get nth cdr."
  (cond
   ((= skip-cdr 0)
    source)
   ((= skip-cdr 1)
    `(cdr ,source))
   (t
    `(nthcdr ,skip-cdr ,source))))

(defun dash--match-cons (match-form source)
  "Setup a cons matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol))
        (n 0)
        (m match-form))
    (while (and (consp m)
                (dash--match-ignore-place-p (car m)))
      (setq n (1+ n)) (!cdr m))
    (cond
     ;; when we only have one pattern in the list, we don't have to
     ;; create a temporary binding (--dash-source--) for the source
     ;; and just use the input directly
     ((and (consp m)
           (not (cdr m)))
      (dash--match (car m) (dash--match-cons-get-car n source)))
     ;; handle other special types
     ((> n 0)
      (dash--match m (dash--match-cons-get-cdr n source)))
     ;; this is the only entry-point for dash--match-cons-1, that's
     ;; why we can't simply use the above branch, it would produce
     ;; infinite recursion
     (t
      (cons (list s source) (dash--match-cons-1 match-form s))))))

(defun dash--get-expand-function (type)
  "Get expand function name for TYPE."
  (intern-soft (format "dash-expand:%s" type)))

(defun dash--match-cons-1 (match-form source &optional props)
  "Match MATCH-FORM against SOURCE.

MATCH-FORM is a proper or improper list.  Each element of
MATCH-FORM is either a symbol, which gets bound to the respective
value in source or another match form which gets destructured
recursively.

If the cdr of last cons cell in the list is `nil', matching stops
there.

SOURCE is a proper or improper list."
  (let ((skip-cdr (or (plist-get props :skip-cdr) 0)))
    (cond
     ((consp match-form)
      (cond
       ((cdr match-form)
        (cond
         ((and (symbolp (car match-form))
               (functionp (dash--get-expand-function (car match-form))))
          (dash--match-kv (dash--match-kv-normalize-match-form match-form) (dash--match-cons-get-cdr skip-cdr source)))
         ((dash--match-ignore-place-p (car match-form))
          (dash--match-cons-1 (cdr match-form) source
                              (plist-put props :skip-cdr (1+ skip-cdr))))
         (t
          (-concat (dash--match (car match-form) (dash--match-cons-skip-cdr skip-cdr source))
                   (dash--match-cons-1 (cdr match-form) source)))))
       (t ;; Last matching place, no need for shift
        (dash--match (car match-form) (dash--match-cons-get-car skip-cdr source)))))
     ((eq match-form nil)
      nil)
     (t ;; Handle improper lists.  Last matching place, no need for shift
      (dash--match match-form (dash--match-cons-get-cdr skip-cdr source))))))

(defun dash--match-vector (match-form source)
  "Setup a vector matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern
     ((= (length match-form) 1)
      (dash--match (aref match-form 0) `(aref ,source 0)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-vector-1 match-form source))
     ;; don't bind `s' if we only have one sub-pattern which is not ignored
     ((let* ((ignored-places (mapcar 'dash--match-ignore-place-p match-form))
             (ignored-places-n (length (-remove 'null ignored-places))))
        (when (= ignored-places-n (1- (length match-form)))
          (let ((n (-find-index 'null ignored-places)))
            (dash--match (aref match-form n) `(aref ,source ,n))))))
     (t
      (cons (list s source) (dash--match-vector-1 match-form s))))))

(defun dash--match-vector-1 (match-form source)
  "Match MATCH-FORM against SOURCE.

MATCH-FORM is a vector.  Each element of MATCH-FORM is either a
symbol, which gets bound to the respective value in source or
another match form which gets destructured recursively.

If second-from-last place in MATCH-FORM is the symbol &rest, the
next element of the MATCH-FORM is matched against the tail of
SOURCE, starting at index of the &rest symbol.  This is
conceptually the same as the (head . tail) match for improper
lists, where dot plays the role of &rest.

SOURCE is a vector.

If the MATCH-FORM vector is shorter than SOURCE vector, only
the (length MATCH-FORM) places are bound, the rest of the SOURCE
is discarded."
  (let ((i 0)
        (l (length match-form))
        (re))
    (while (< i l)
      (let ((m (aref match-form i)))
        (push (cond
               ((and (symbolp m)
                     (eq m '&rest))
                (prog1 (dash--match
                        (aref match-form (1+ i))
                        `(substring ,source ,i))
                  (setq i l)))
               ((and (symbolp m)
                     ;; do not match symbols starting with _
                     (not (eq (aref (symbol-name m) 0) ?_)))
                (list (list m `(aref ,source ,i))))
               ((not (symbolp m))
                (dash--match m `(aref ,source ,i))))
              re)
        (setq i (1+ i))))
    (-flatten-n 1 (nreverse re))))

(defun dash--match-kv-normalize-match-form (pattern)
  "Normalize kv PATTERN.

This method normalizes PATTERN to the format expected by
`dash--match-kv'.  See `-let' for the specification."
  (let ((normalized (list (car pattern)))
        (skip nil)
        (fill-placeholder (make-symbol "--dash-fill-placeholder--")))
    (-each (apply '-zip (-pad fill-placeholder (cdr pattern) (cddr pattern)))
      (lambda (pair)
        (let ((current (car pair))
              (next (cdr pair)))
          (if skip
              (setq skip nil)
            (if (or (eq fill-placeholder next)
                    (not (or (and (symbolp next)
                                  (not (keywordp next))
                                  (not (eq next t))
                                  (not (eq next nil)))
                             (and (consp next)
                                  (not (eq (car next) 'quote)))
                             (vectorp next))))
                (progn
                  (cond
                   ((keywordp current)
                    (push current normalized)
                    (push (intern (substring (symbol-name current) 1)) normalized))
                   ((stringp current)
                    (push current normalized)
                    (push (intern current) normalized))
                   ((and (consp current)
                         (eq (car current) 'quote))
                    (push current normalized)
                    (push (cadr current) normalized))
                   (t (error "-let: found key `%s' in kv destructuring but its pattern `%s' is invalid and can not be derived from the key" current next)))
                  (setq skip nil))
              (push current normalized)
              (push next normalized)
              (setq skip t))))))
    (nreverse normalized)))

(defun dash--match-kv (match-form source)
  "Setup a kv matching environment and call the real matcher.

kv can be any key-value store, such as plist, alist or hash-table."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern (&type key val)
     ((= (length match-form) 3)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     (t
      (cons (list s source) (dash--match-kv-1 (cdr match-form) s (car match-form)))))))

(defun dash-expand:&hash (key source)
  "Generate extracting KEY from SOURCE for &hash destructuring."
  `(gethash ,key ,source))

(defun dash-expand:&plist (key source)
  "Generate extracting KEY from SOURCE for &plist destructuring."
  `(plist-get ,source ,key))

(defun dash-expand:&alist (key source)
  "Generate extracting KEY from SOURCE for &alist destructuring."
  `(cdr (assoc ,key ,source)))

(defun dash-expand:&hash? (key source)
  "Generate extracting KEY from SOURCE for &hash? destructuring.
Similar to &hash but check whether the map is not nil."
  (let ((src (make-symbol "src")))
    `(let ((,src ,source))
       (when ,src (gethash ,key ,src)))))

(defalias 'dash-expand:&keys 'dash-expand:&plist)

(defun dash--match-kv-1 (match-form source type)
  "Match MATCH-FORM against SOURCE of type TYPE.

MATCH-FORM is a proper list of the form (key1 place1 ... keyN
placeN).  Each placeK is either a symbol, which gets bound to the
value of keyK retrieved from the key-value store, or another
match form which gets destructured recursively.

SOURCE is a key-value store of type TYPE, which can be a plist,
an alist or a hash table.

TYPE is a token specifying the type of the key-value store.
Valid values are &plist, &alist and &hash."
  (-flatten-n 1 (-map
                 (lambda (kv)
                   (let* ((k (car kv))
                          (v (cadr kv))
                          (getter
                           (funcall (dash--get-expand-function type) k source)))
                     (cond
                      ((symbolp v)
                       (list (list v getter)))
                      (t (dash--match v getter)))))
                 (-partition 2 match-form))))

(defun dash--match-symbol (match-form source)
  "Bind a symbol.

This works just like `let', there is no destructuring."
  (list (list match-form source)))

(defun dash--match (match-form source)
  "Match MATCH-FORM against SOURCE.

This function tests the MATCH-FORM and dispatches to specific
matchers based on the type of the expression.

Key-value stores are disambiguated by placing a token &plist,
&alist or &hash as a first item in the MATCH-FORM."
  (cond
   ((symbolp match-form)
    (dash--match-symbol match-form source))
   ((consp match-form)
    (cond
     ;; Handle the "x &as" bindings first.
     ((and (consp (cdr match-form))
           (symbolp (car match-form))
           (eq '&as (cadr match-form)))
      (let ((s (car match-form)))
        (cons (list s source)
              (dash--match (cddr match-form) s))))
     ((functionp (dash--get-expand-function (car match-form)))
      (dash--match-kv (dash--match-kv-normalize-match-form match-form) source))
     (t (dash--match-cons match-form source))))
   ((vectorp match-form)
    ;; We support the &as binding in vectors too
    (cond
     ((and (> (length match-form) 2)
           (symbolp (aref match-form 0))
           (eq '&as (aref match-form 1)))
      (let ((s (aref match-form 0)))
        (cons (list s source)
              (dash--match (substring match-form 2) s))))
     (t (dash--match-vector match-form source))))))

(defun dash--normalize-let-varlist (varlist)
  "Normalize VARLIST so that every binding is a list.

`let' allows specifying a binding which is not a list but simply
the place which is then automatically bound to nil, such that all
three of the following are identical and evaluate to nil.

  (let (a) a)
  (let ((a)) a)
  (let ((a nil)) a)

This function normalizes all of these to the last form."
  (--map (if (consp it) it (list it nil)) varlist))

(defmacro -let* (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.

VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE structurally.  SOURCE is
only evaluated once for each PATTERN.

Each SOURCE can refer to the symbols already bound by this
VARLIST.  This is useful if you want to destructure SOURCE
recursively but also want to name the intermediate structures.

See `-let' for the list of all possible patterns."
  (declare (debug ((&rest [&or (sexp form) sexp]) body))
           (indent 1))
  (let* ((varlist (dash--normalize-let-varlist varlist))
         (bindings (--mapcat (dash--match (car it) (cadr it)) varlist)))
    `(let* ,bindings
       ,@body)))

(defmacro -let (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.

VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE \"structurally\".  SOURCE
is only evaluated once for each PATTERN.  Each PATTERN is matched
recursively, and can therefore contain sub-patterns which are
matched against corresponding sub-expressions of SOURCE.

All the SOURCEs are evalled before any symbols are
bound (i.e. \"in parallel\").

If VARLIST only contains one (PATTERN SOURCE) element, you can
optionally specify it using a vector and discarding the
outer-most parens.  Thus

  (-let ((PATTERN SOURCE)) ...)

becomes

  (-let [PATTERN SOURCE] ...).

`-let' uses a convention of not binding places (symbols) starting
with _ whenever it's possible.  You can use this to skip over
entries you don't care about.  However, this is not *always*
possible (as a result of implementation) and these symbols might
get bound to undefined values.

Following is the overview of supported patterns.  Remember that
patterns can be matched recursively, so every a, b, aK in the
following can be a matching construct and not necessarily a
symbol/variable.

Symbol:

  a - bind the SOURCE to A.  This is just like regular `let'.

Conses and lists:

  (a) - bind `car' of cons/list to A

  (a . b) - bind car of cons to A and `cdr' to B

  (a b) - bind car of list to A and `cadr' to B

  (a1 a2 a3 ...) - bind 0th car of list to A1, 1st to A2, 2nd to A3...

  (a1 a2 a3 ... aN . rest) - as above, but bind the Nth cdr to REST.

Vectors:

  [a] - bind 0th element of a non-list sequence to A (works with
        vectors, strings, bit arrays...)

  [a1 a2 a3 ...] - bind 0th element of non-list sequence to A0, 1st to
                   A1, 2nd to A2, ...
                   If the PATTERN is shorter than SOURCE, the values at
                   places not in PATTERN are ignored.
                   If the PATTERN is longer than SOURCE, an `error' is
                   thrown.

  [a1 a2 a3 ... &rest rest] - as above, but bind the rest of
                              the sequence to REST.  This is
                              conceptually the same as improper list
                              matching (a1 a2 ... aN . rest)

Key/value stores:

  (&plist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE plist to aK.  If the
                                 value is not found, aK is nil.
                                 Uses `plist-get' to fetch values.

  (&alist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE alist to aK.  If the
                                 value is not found, aK is nil.
                                 Uses `assoc' to fetch values.

  (&hash key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                SOURCE hash table to aK.  If the
                                value is not found, aK is nil.
                                Uses `gethash' to fetch values.

Further, special keyword &keys supports \"inline\" matching of
plist-like key-value pairs, similarly to &keys keyword of
`cl-defun'.

  (a1 a2 ... aN &keys key1 b1 ... keyN bK)

This binds N values from the list to a1 ... aN, then interprets
the cdr as a plist (see key/value matching above).

A shorthand notation for kv-destructuring exists which allows the
patterns be optionally left out and derived from the key name in
the following fashion:

- a key :foo is converted into `foo' pattern,
- a key 'bar is converted into `bar' pattern,
- a key \"baz\" is converted into `baz' pattern.

That is, the entire value under the key is bound to the derived
variable without any further destructuring.

This is possible only when the form following the key is not a
valid pattern (i.e. not a symbol, a cons cell or a vector).
Otherwise the matching proceeds as usual and in case of an
invalid spec fails with an error.

Thus the patterns are normalized as follows:

   ;; derive all the missing patterns
   (&plist :foo 'bar \"baz\") => (&plist :foo foo 'bar bar \"baz\" baz)

   ;; we can specify some but not others
   (&plist :foo 'bar explicit-bar) => (&plist :foo foo 'bar explicit-bar)

   ;; nothing happens, we store :foo in x
   (&plist :foo x) => (&plist :foo x)

   ;; nothing happens, we match recursively
   (&plist :foo (a b c)) => (&plist :foo (a b c))

You can name the source using the syntax SYMBOL &as PATTERN.
This syntax works with lists (proper or improper), vectors and
all types of maps.

  (list &as a b c) (list 1 2 3)

binds A to 1, B to 2, C to 3 and LIST to (1 2 3).

Similarly:

  (bounds &as beg . end) (cons 1 2)

binds BEG to 1, END to 2 and BOUNDS to (1 . 2).

  (items &as first . rest) (list 1 2 3)

binds FIRST to 1, REST to (2 3) and ITEMS to (1 2 3)

  [vect &as _ b c] [1 2 3]

binds B to 2, C to 3 and VECT to [1 2 3] (_ avoids binding as usual).

  (plist &as &plist :b b) (list :a 1 :b 2 :c 3)

binds B to 2 and PLIST to (:a 1 :b 2 :c 3).  Same for &alist and &hash.

This is especially useful when we want to capture the result of a
computation and destructure at the same time.  Consider the
form (function-returning-complex-structure) returning a list of
two vectors with two items each.  We want to capture this entire
result and pass it to another computation, but at the same time
we want to get the second item from each vector.  We can achieve
it with pattern

  (result &as [_ a] [_ b]) (function-returning-complex-structure)

Note: Clojure programmers may know this feature as the \":as
binding\".  The difference is that we put the &as at the front
because we need to support improper list binding."
  (declare (debug ([&or (&rest [&or (sexp form) sexp])
                        (vector [&rest [sexp form]])]
                   body))
           (indent 1))
  (if (vectorp varlist)
      `(let* ,(dash--match (aref varlist 0) (aref varlist 1))
         ,@body)
    (let* ((varlist (dash--normalize-let-varlist varlist))
           (inputs (--map-indexed (list (make-symbol (format "input%d" it-index)) (cadr it)) varlist))
           (new-varlist (--map (list (caar it) (cadr it)) (-zip varlist inputs))))
      `(let ,inputs
         (-let* ,new-varlist ,@body)))))

(defmacro -lambda (match-form &rest body)
  "Return a lambda which destructures its input as MATCH-FORM and executes BODY.

Note that you have to enclose the MATCH-FORM in a pair of parens,
such that:

  (-lambda (x) body)
  (-lambda (x y ...) body)

has the usual semantics of `lambda'.  Furthermore, these get
translated into normal `lambda', so there is no performance
penalty.

See `-let' for a description of the destructuring mechanism."
  (declare (doc-string 2) (indent defun)
           (debug (&define sexp
                           [&optional stringp]
                           [&optional ("interactive" interactive)]
                           def-body)))
  (cond
   ((nlistp match-form)
    (signal 'wrong-type-argument (list #'listp match-form)))
   ;; No destructuring, so just return regular `lambda' for speed.
   ((-all? #'symbolp match-form)
    `(lambda ,match-form ,@body))
   ((let ((inputs (--map-indexed
                   (list it (make-symbol (format "input%d" it-index)))
                   match-form)))
      ;; TODO: because inputs to the `lambda' are evaluated only once,
      ;; `-let*' need not create the extra bindings to ensure that.
      ;; We should find a way to optimize that.  Not critical however.
      `(lambda ,(mapcar #'cadr inputs)
         (-let* ,inputs ,@body))))))

(defmacro -setq (&rest forms)
  "Bind each MATCH-FORM to the value of its VAL.

MATCH-FORM destructuring is done according to the rules of `-let'.

This macro allows you to bind multiple variables by destructuring
the value, so for example:

  (-setq (a b) x
         (&plist :c c) plist)

expands roughly speaking to the following code

  (setq a (car x)
        b (cadr x)
        c (plist-get plist :c))

Care is taken to only evaluate each VAL once so that in case of
multiple assignments it does not cause unexpected side effects.

\(fn [MATCH-FORM VAL]...)"
  (declare (debug (&rest sexp form))
           (indent 1))
  (when (= (mod (length forms) 2) 1)
    (signal 'wrong-number-of-arguments (list '-setq (1+ (length forms)))))
  (let* ((forms-and-sources
          ;; First get all the necessary mappings with all the
          ;; intermediate bindings.
          (-map (lambda (x) (dash--match (car x) (cadr x)))
                (-partition 2 forms)))
         ;; To preserve the logic of dynamic scoping we must ensure
         ;; that we `setq' the variables outside of the `let*' form
         ;; which holds the destructured intermediate values.  For
         ;; this we generate for each variable a placeholder which is
         ;; bound to (lexically) the result of the destructuring.
         ;; Then outside of the helper `let*' form we bind all the
         ;; original variables to their respective placeholders.
         ;; TODO: There is a lot of room for possible optimization,
         ;; for start playing with `special-variable-p' to eliminate
         ;; unnecessary re-binding.
         (variables-to-placeholders
          (-mapcat
           (lambda (bindings)
             (-map
              (lambda (binding)
                (let ((var (car binding)))
                  (list var (make-symbol (concat "--dash-binding-" (symbol-name var) "--")))))
              (--filter (not (string-prefix-p "--" (symbol-name (car it)))) bindings)))
           forms-and-sources)))
    `(let ,(-map 'cadr variables-to-placeholders)
       (let* ,(-flatten-n 1 forms-and-sources)
         (setq ,@(-flatten (-map 'reverse variables-to-placeholders))))
       (setq ,@(-flatten variables-to-placeholders)))))

(defmacro -if-let* (vars-vals then &rest else)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and do THEN, otherwise do ELSE. VARS-VALS should be a list
of (VAR VAL) pairs.

Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) form body))
           (indent 2))
  (->> vars-vals
       (--mapcat (dash--match (car it) (cadr it)))
       (--reduce-r-from
        (let ((var (car it))
              (val (cadr it)))
          `(let ((,var ,val))
             (if ,var ,acc ,@else)))
        then)))

(defmacro -if-let (var-val then &rest else)
  "If VAL evaluates to non-nil, bind it to VAR and do THEN,
otherwise do ELSE.

Note: binding is done according to `-let'.

\(fn (VAR VAL) THEN &rest ELSE)"
  (declare (debug ((sexp form) form body))
           (indent 2))
  `(-if-let* (,var-val) ,then ,@else))

(defmacro --if-let (val then &rest else)
  "If VAL evaluates to non-nil, bind it to symbol `it' and do THEN,
otherwise do ELSE."
  (declare (debug (form form body))
           (indent 2))
  `(-if-let (it ,val) ,then ,@else))

(defmacro -when-let* (vars-vals &rest body)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and execute body. VARS-VALS should be a list of (VAR VAL)
pairs.

Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) body))
           (indent 1))
  `(-if-let* ,vars-vals (progn ,@body)))

(defmacro -when-let (var-val &rest body)
  "If VAL evaluates to non-nil, bind it to VAR and execute body.

Note: binding is done according to `-let'.

\(fn (VAR VAL) &rest BODY)"
  (declare (debug ((sexp form) body))
           (indent 1))
  `(-if-let ,var-val (progn ,@body)))

(defmacro --when-let (val &rest body)
  "If VAL evaluates to non-nil, bind it to symbol `it' and
execute body."
  (declare (debug (form body))
           (indent 1))
  `(--if-let ,val (progn ,@body)))

(defvar -compare-fn nil
  "Tests for equality use this function or `equal' if this is nil.
It should only be set using dynamic scope with a let, like:

  (let ((-compare-fn #\\='=)) (-union numbers1 numbers2 numbers3)")

(defun -distinct (list)
  "Return a new list with all duplicates removed.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil.

Alias: `-uniq'"
  ;; Implementation note: The speedup gained from hash table lookup
  ;; starts to outweigh its overhead for lists of length greater than
  ;; 32.  See discussion in PR #305.
  (let* ((len (length list))
         (lut (and (> len 32)
                   ;; Check that `-compare-fn' is a valid hash-table
                   ;; lookup function or `nil'.
                   (memq -compare-fn '(nil equal eq eql))
                   (make-hash-table :test (or -compare-fn #'equal)
                                    :size len))))
    (if lut
        (--filter (unless (gethash it lut)
                    (puthash it t lut))
                  list)
      (--each list (unless (-contains? lut it) (!cons it lut)))
      (nreverse lut))))

(defalias '-uniq '-distinct)

(defun -union (list list2)
  "Return a new list containing the elements of LIST and elements of LIST2 that are not in LIST.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  ;; We fall back to iteration implementation if the comparison
  ;; function isn't one of `eq', `eql' or `equal'.
  (let* ((result (reverse list))
         ;; TODO: get rid of this dynamic variable, pass it as an
         ;; argument instead.
         (-compare-fn (if (bound-and-true-p -compare-fn)
                          -compare-fn
                        'equal)))
    (if (memq -compare-fn '(eq eql equal))
        (let ((ht (make-hash-table :test -compare-fn)))
          (--each list (puthash it t ht))
          (--each list2 (unless (gethash it ht) (!cons it result))))
      (--each list2 (unless (-contains? result it) (!cons it result))))
    (nreverse result)))

(defun -intersection (list list2)
  "Return a new list containing only the elements that are members of both LIST and LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (-contains? list2 it) list))

(defun -difference (list list2)
  "Return a new list with only the members of LIST that are not in LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (not (-contains? list2 it)) list))

(defun -powerset (list)
  "Return the power set of LIST."
  (if (null list) '(())
    (let ((last (-powerset (cdr list))))
      (append (mapcar (lambda (x) (cons (car list) x)) last)
              last))))

(defun -permutations (list)
  "Return the permutations of LIST."
  (if (null list) '(())
    (apply #'append
           (mapcar (lambda (x)
                     (mapcar (lambda (perm) (cons x perm))
                             (-permutations (remove x list))))
                   list))))

(defun -inits (list)
  "Return all prefixes of LIST."
  (let ((res (list list)))
    (setq list (reverse list))
    (while list
      (push (reverse (!cdr list)) res))
    res))

(defun -tails (list)
  "Return all suffixes of LIST"
  (-reductions-r-from 'cons nil list))

(defun -common-prefix (&rest lists)
  "Return the longest common prefix of LISTS."
  (declare (pure t) (side-effect-free t))
  (--reduce (--take-while (and acc (equal (pop acc) it)) it)
            lists))

(defun -common-suffix (&rest lists)
  "Return the longest common suffix of LISTS."
  (nreverse (apply #'-common-prefix (mapcar #'reverse lists))))

(defun -contains? (list element)
  "Return non-nil if LIST contains ELEMENT.

The test for equality is done with `equal', or with `-compare-fn'
if that's non-nil.

Alias: `-contains-p'"
  (not
   (null
    (cond
     ((null -compare-fn)    (member element list))
     ((eq -compare-fn 'eq)  (memq element list))
     ((eq -compare-fn 'eql) (memql element list))
     (t
      (let ((lst list))
        (while (and lst
                    (not (funcall -compare-fn element (car lst))))
          (setq lst (cdr lst)))
        lst))))))

(defalias '-contains-p '-contains?)

(defun -same-items? (list list2)
  "Return true if LIST and LIST2 has the same items.

The order of the elements in the lists does not matter.

Alias: `-same-items-p'"
  (let ((length-a (length list))
        (length-b (length list2)))
    (and
     (= length-a length-b)
     (= length-a (length (-intersection list list2))))))

(defalias '-same-items-p '-same-items?)

(defun -is-prefix? (prefix list)
  "Return non-nil if PREFIX is a prefix of LIST.

Alias: `-is-prefix-p'."
  (declare (pure t) (side-effect-free t))
  (--each-while list (and (equal (car prefix) it)
                          (!cdr prefix)))
  (null prefix))

(defun -is-suffix? (suffix list)
  "Return non-nil if SUFFIX is a suffix of LIST.

Alias: `-is-suffix-p'."
  (declare (pure t) (side-effect-free t))
  (equal suffix (last list (length suffix))))

(defun -is-infix? (infix list)
  "Return non-nil if INFIX is infix of LIST.

This operation runs in O(n^2) time

Alias: `-is-infix-p'"
  (declare (pure t) (side-effect-free t))
  (let (done)
    (while (and (not done) list)
      (setq done (-is-prefix? infix list))
      (!cdr list))
    done))

(defalias '-is-prefix-p '-is-prefix?)
(defalias '-is-suffix-p '-is-suffix?)
(defalias '-is-infix-p '-is-infix?)

(defun -sort (comparator list)
  "Sort LIST, stably, comparing elements using COMPARATOR.
Return the sorted list.  LIST is NOT modified by side effects.
COMPARATOR is called with two elements of LIST, and should return non-nil
if the first element should sort before the second."
  (sort (copy-sequence list) comparator))

(defmacro --sort (form list)
  "Anaphoric form of `-sort'."
  (declare (debug (def-form form)))
  `(-sort (lambda (it other) ,form) ,list))

(defun -list (&optional arg &rest args)
  "Ensure ARG is a list.
If ARG is already a list, return it as is (not a copy).
Otherwise, return a new list with ARG as its only element.

Another supported calling convention is (-list &rest ARGS).
In this case, if ARG is not a list, a new list with all of
ARGS as elements is returned.  This use is supported for
backward compatibility and is otherwise deprecated."
  (declare (advertised-calling-convention (arg) "2.18.0")
           (pure t) (side-effect-free t))
  (if (listp arg) arg (cons arg args)))

(defun -repeat (n x)
  "Return a new list of length N with each element being X.
Return nil if N is less than 1."
  (declare (pure t) (side-effect-free t))
  (and (natnump n) (make-list n x)))

(defun -sum (list)
  "Return the sum of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '+ list))

(defun -running-sum (list)
  "Return a list with running sums of items in LIST.
LIST must be non-empty."
  (declare (pure t) (side-effect-free t))
  (or list (signal 'wrong-type-argument (list #'consp list)))
  (-reductions #'+ list))

(defun -product (list)
  "Return the product of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '* list))

(defun -running-product (list)
  "Return a list with running products of items in LIST.
LIST must be non-empty."
  (declare (pure t) (side-effect-free t))
  (or list (signal 'wrong-type-argument (list #'consp list)))
  (-reductions #'* list))

(defun -max (list)
  "Return the largest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'max list))

(defun -min (list)
  "Return the smallest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'min list))

(defun -max-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the greatest element of the list by the comparison function.

See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) it acc) list))

(defun -min-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the least element of the list by the comparison function.

See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) acc it) list))

(defmacro --max-by (form list)
  "Anaphoric version of `-max-by'.

The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (def-form form)))
  `(-max-by (lambda (it other) ,form) ,list))

(defmacro --min-by (form list)
  "Anaphoric version of `-min-by'.

The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (def-form form)))
  `(-min-by (lambda (it other) ,form) ,list))

(defun -iota (count &optional start step)
  "Return a list containing COUNT numbers.
Starts from START and adds STEP each time.  The default START is
zero, the default STEP is 1.
This function takes its name from the corresponding primitive in
the APL language."
  (declare (pure t) (side-effect-free t))
  (unless (natnump count)
    (signal 'wrong-type-argument (list #'natnump count)))
  (or start (setq start 0))
  (or step (setq step 1))
  (if (zerop step)
      (make-list count start)
    (--iterate (+ it step) start count)))

(defun -fix (fn list)
  "Compute the (least) fixpoint of FN with initial input LIST.

FN is called at least once, results are compared with `equal'."
  (let ((re (funcall fn list)))
    (while (not (equal list re))
      (setq list re)
      (setq re (funcall fn re)))
    re))

(defmacro --fix (form list)
  "Anaphoric form of `-fix'."
  (declare (debug (def-form form)))
  `(-fix (lambda (it) ,form) ,list))

(defun -unfold (fun seed)
  "Build a list from SEED using FUN.

This is \"dual\" operation to `-reduce-r': while -reduce-r
consumes a list to produce a single value, `-unfold' takes a
seed value and builds a (potentially infinite!) list.

FUN should return `nil' to stop the generating process, or a
cons (A . B), where A will be prepended to the result and B is
the new seed."
  (let ((last (funcall fun seed)) r)
    (while last
      (push (car last) r)
      (setq last (funcall fun (cdr last))))
    (nreverse r)))

(defmacro --unfold (form seed)
  "Anaphoric version of `-unfold'."
  (declare (debug (def-form form)))
  `(-unfold (lambda (it) ,form) ,seed))

(defun -cons-pair? (obj)
  "Return non-nil if OBJ is a true cons pair.
That is, a cons (A . B) where B is not a list.

Alias: `-cons-pair-p'."
  (declare (pure t) (side-effect-free t))
  (nlistp (cdr-safe obj)))

(defalias '-cons-pair-p '-cons-pair?)

(defun -cons-to-list (con)
  "Convert a cons pair to a list with `car' and `cdr' of the pair respectively."
  (declare (pure t) (side-effect-free t))
  (list (car con) (cdr con)))

(defun -value-to-list (val)
  "Convert a value to a list.

If the value is a cons pair, make a list with two elements, `car'
and `cdr' of the pair respectively.

If the value is anything else, wrap it in a list."
  (declare (pure t) (side-effect-free t))
  (cond
   ((-cons-pair? val) (-cons-to-list val))
   (t (list val))))

(defun -tree-mapreduce-from (fn folder init-value tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.

Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.

This is the same as calling `-tree-reduce-from' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r-from folder init-value (mapcar (lambda (x) (-tree-mapreduce-from fn folder init-value x)) tree)))
   (t (funcall fn tree))))

(defmacro --tree-mapreduce-from (form folder init-value tree)
  "Anaphoric form of `-tree-mapreduce-from'."
  (declare (debug (def-form def-form form form)))
  `(-tree-mapreduce-from (lambda (it) ,form) (lambda (it acc) ,folder) ,init-value ,tree))

(defun -tree-mapreduce (fn folder tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.

Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.

This is the same as calling `-tree-reduce' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r folder (mapcar (lambda (x) (-tree-mapreduce fn folder x)) tree)))
   (t (funcall fn tree))))

(defmacro --tree-mapreduce (form folder tree)
  "Anaphoric form of `-tree-mapreduce'."
  (declare (debug (def-form def-form form)))
  `(-tree-mapreduce (lambda (it) ,form) (lambda (it acc) ,folder) ,tree))

(defun -tree-map (fn tree)
  "Apply FN to each element of TREE while preserving the tree structure."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (mapcar (lambda (x) (-tree-map fn x)) tree))
   (t (funcall fn tree))))

(defmacro --tree-map (form tree)
  "Anaphoric form of `-tree-map'."
  (declare (debug (def-form form)))
  `(-tree-map (lambda (it) ,form) ,tree))

(defun -tree-reduce-from (fn init-value tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.

FN is first applied to INIT-VALUE and first element of the list,
then on this result and second element from the list etc.

The initial value is ignored on cons pairs as they always contain
two elements."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r-from fn init-value (mapcar (lambda (x) (-tree-reduce-from fn init-value x)) tree)))
   (t tree)))

(defmacro --tree-reduce-from (form init-value tree)
  "Anaphoric form of `-tree-reduce-from'."
  (declare (debug (def-form form form)))
  `(-tree-reduce-from (lambda (it acc) ,form) ,init-value ,tree))

(defun -tree-reduce (fn tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.

FN is first applied to first element of the list and second
element, then on this result and third element from the list etc.

See `-reduce-r' for how exactly are lists of zero or one element handled."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r fn (mapcar (lambda (x) (-tree-reduce fn x)) tree)))
   (t tree)))

(defmacro --tree-reduce (form tree)
  "Anaphoric form of `-tree-reduce'."
  (declare (debug (def-form form)))
  `(-tree-reduce (lambda (it acc) ,form) ,tree))

(defun -tree-map-nodes (pred fun tree)
  "Call FUN on each node of TREE that satisfies PRED.

If PRED returns nil, continue descending down this node.  If PRED
returns non-nil, apply FUN to this node and do not descend
further."
  (if (funcall pred tree)
      (funcall fun tree)
    (if (and (listp tree)
             (not (-cons-pair? tree)))
        (-map (lambda (x) (-tree-map-nodes pred fun x)) tree)
      tree)))

(defmacro --tree-map-nodes (pred form tree)
  "Anaphoric form of `-tree-map-nodes'."
  (declare (debug (def-form def-form form)))
  `(-tree-map-nodes (lambda (it) ,pred) (lambda (it) ,form) ,tree))

(defun -tree-seq (branch children tree)
  "Return a sequence of the nodes in TREE, in depth-first search order.

BRANCH is a predicate of one argument that returns non-nil if the
passed argument is a branch, that is, a node that can have children.

CHILDREN is a function of one argument that returns the children
of the passed branch node.

Non-branch nodes are simply copied."
  (cons tree
        (when (funcall branch tree)
          (-mapcat (lambda (x) (-tree-seq branch children x))
                   (funcall children tree)))))

(defmacro --tree-seq (branch children tree)
  "Anaphoric form of `-tree-seq'."
  (declare (debug (def-form def-form form)))
  `(-tree-seq (lambda (it) ,branch) (lambda (it) ,children) ,tree))

(defun -clone (list)
  "Create a deep copy of LIST.
The new list has the same elements and structure but all cons are
replaced with new ones.  This is useful when you need to clone a
structure such as plist or alist."
  (declare (pure t) (side-effect-free t))
  (-tree-map 'identity list))

;;; Combinators

(defalias '-partial #'apply-partially)

(defun -rpartial (fn &rest args)
  "Return a function that is a partial application of FN to ARGS.
ARGS is a list of the last N arguments to pass to FN.  The result
is a new function which does the same as FN, except that the last
N arguments are fixed at the values with which this function was
called.  This is like `-partial', except the arguments are fixed
starting from the right rather than the left."
  (declare (pure t) (side-effect-free t))
  (lambda (&rest args-before) (apply fn (append args-before args))))

(defun -juxt (&rest fns)
  "Return a function that is the juxtaposition of FNS.
The returned function takes a variable number of ARGS, applies
each of FNS in turn to ARGS, and returns the list of results."
  (declare (pure t) (side-effect-free t))
  (lambda (&rest args) (mapcar (lambda (x) (apply x args)) fns)))

(defun -compose (&rest fns)
  "Compose FNS into a single composite function.
Return a function that takes a variable number of ARGS, applies
the last function in FNS to ARGS, and returns the result of
calling each remaining function on the result of the previous
function, right-to-left.  If no FNS are given, return a variadic
`identity' function."
  (declare (pure t) (side-effect-free t))
  (let* ((fns (nreverse fns))
         (head (car fns))
         (tail (cdr fns)))
    (cond (tail
           (lambda (&rest args)
             (--reduce-from (funcall it acc) (apply head args) tail)))
          (fns head)
          ((lambda (&optional arg &rest _) arg)))))

(defun -applify (fn)
  "Return a function that applies FN to a single list of args.
This changes the arity of FN from taking N distinct arguments to
taking 1 argument which is a list of N arguments."
  (declare (pure t) (side-effect-free t))
  (lambda (args) (apply fn args)))

(defun -on (op trans)
  "Return a function that calls TRANS on each arg and OP on the results.
The returned function takes a variable number of arguments, calls
the function TRANS on each one in turn, and then passes those
results as the list of arguments to OP, in the same order.

For example, the following pairs of expressions are morally
equivalent:

  (funcall (-on #\\='+ #\\='1+) 1 2 3) = (+ (1+ 1) (1+ 2) (1+ 3))
  (funcall (-on #\\='+ #\\='1+))       = (+)"
  (declare (pure t) (side-effect-free t))
  (lambda (&rest args)
    ;; This unrolling seems to be a relatively cheap way to keep the
    ;; overhead of `mapcar' + `apply' in check.
    (cond ((cddr args)
           (apply op (mapcar trans args)))
          ((cdr args)
           (funcall op (funcall trans (car args)) (funcall trans (cadr args))))
          (args
           (funcall op (funcall trans (car args))))
          ((funcall op)))))

(defun -flip (fn)
  "Return a function that calls FN with its arguments reversed.
The returned function takes the same number of arguments as FN.

For example, the following two expressions are morally
equivalent:

  (funcall (-flip #\\='-) 1 2) = (- 2 1)

See also: `-rotate-args'."
  (declare (pure t) (side-effect-free t))
  (lambda (&rest args) ;; Open-code for speed.
    (cond ((cddr args) (apply fn (nreverse args)))
          ((cdr args) (funcall fn (cadr args) (car args)))
          (args (funcall fn (car args)))
          ((funcall fn)))))

(defun -rotate-args (n fn)
  "Return a function that calls FN with args rotated N places to the right.
The returned function takes the same number of arguments as FN,
rotates the list of arguments N places to the right (left if N is
negative) just like `-rotate', and applies FN to the result.

See also: `-flip'."
  (declare (pure t) (side-effect-free t))
  (if (zerop n)
      fn
    (let ((even (= (% n 2) 0)))
      (lambda (&rest args)
        (cond ((cddr args) ;; Open-code for speed.
               (apply fn (-rotate n args)))
              ((cdr args)
               (let ((fst (car args))
                     (snd (cadr args)))
                 (funcall fn (if even fst snd) (if even snd fst))))
              (args
               (funcall fn (car args)))
              ((funcall fn)))))))

(defun -const (c)
  "Return a function that returns C ignoring any additional arguments.

In types: a -> b -> a"
  (declare (pure t) (side-effect-free t))
  (lambda (&rest _) c))

(defmacro -cut (&rest params)
  "Take n-ary function and n arguments and specialize some of them.
Arguments denoted by <> will be left unspecialized.

See SRFI-26 for detailed description."
  (declare (debug (&optional sexp &rest &or "<>" form)))
  (let* ((i 0)
         (args (--keep (when (eq it '<>)
                         (setq i (1+ i))
                         (make-symbol (format "D%d" i)))
                       params)))
    `(lambda ,args
       ,(let ((body (--map (if (eq it '<>) (pop args) it) params)))
          (if (eq (car params) '<>)
              (cons #'funcall body)
            body)))))

(defun -not (pred)
  "Return a predicate that negates the result of PRED.
The returned predicate passes its arguments to PRED.  If PRED
returns nil, the result is non-nil; otherwise the result is nil.

See also: `-andfn' and `-orfn'."
  (declare (pure t) (side-effect-free t))
  (lambda (&rest args) (not (apply pred args))))

(defun -orfn (&rest preds)
  "Return a predicate that returns the first non-nil result of PREDS.
The returned predicate takes a variable number of arguments,
passes them to each predicate in PREDS in turn until one of them
returns non-nil, and returns that non-nil result without calling
the remaining PREDS.  If all PREDS return nil, or if no PREDS are
given, the returned predicate returns nil.

See also: `-andfn' and `-not'."
  (declare (pure t) (side-effect-free t))
  ;; Open-code for speed.
  (cond ((cdr preds) (lambda (&rest args) (--some (apply it args) preds)))
        (preds (car preds))
        (#'ignore)))

(defun -andfn (&rest preds)
  "Return a predicate that returns non-nil if all PREDS do so.
The returned predicate P takes a variable number of arguments and
passes them to each predicate in PREDS in turn.  If any one of
PREDS returns nil, P also returns nil without calling the
remaining PREDS.  If all PREDS return non-nil, P returns the last
such value.  If no PREDS are given, P always returns non-nil.

See also: `-orfn' and `-not'."
  (declare (pure t) (side-effect-free t))
  ;; Open-code for speed.
  (cond ((cdr preds) (lambda (&rest args) (--every (apply it args) preds)))
        (preds (car preds))
        ;; As a `pure' function, this runtime check may generate
        ;; backward-incompatible bytecode for `(-andfn)' at compile-time,
        ;; but I doubt that's a problem in practice (famous last words).
        ((fboundp 'always) #'always)
        ((lambda (&rest _) t))))

(defun -iteratefn (fn n)
  "Return a function FN composed N times with itself.

FN is a unary function.  If you need to use a function of higher
arity, use `-applify' first to turn it into a unary function.

With n = 0, this acts as identity function.

In types: (a -> a) -> Int -> a -> a.

This function satisfies the following law:

  (funcall (-iteratefn fn n) init) = (-last-item (-iterate fn init (1+ n)))."
  (lambda (x) (--dotimes n (setq x (funcall fn x))) x))

(defun -counter (&optional beg end inc)
  "Return a closure that counts from BEG to END, with increment INC.

The closure will return the next value in the counting sequence
each time it is called, and nil after END is reached. BEG
defaults to 0, INC defaults to 1, and if END is nil, the counter
will increment indefinitely.

The closure accepts any number of arguments, which are discarded."
  (let ((inc (or inc 1))
        (n (or beg 0)))
    (lambda (&rest _)
      (when (or (not end) (< n end))
        (prog1 n
          (setq n (+ n inc)))))))

(defvar -fixfn-max-iterations 1000
  "The default maximum number of iterations performed by `-fixfn'
  unless otherwise specified.")

(defun -fixfn (fn &optional equal-test halt-test)
  "Return a function that computes the (least) fixpoint of FN.

FN must be a unary function. The returned lambda takes a single
argument, X, the initial value for the fixpoint iteration. The
iteration halts when either of the following conditions is satisfied:

 1. Iteration converges to the fixpoint, with equality being
    tested using EQUAL-TEST. If EQUAL-TEST is not specified,
    `equal' is used. For functions over the floating point
    numbers, it may be necessary to provide an appropriate
    approximate comparison test.

 2. HALT-TEST returns a non-nil value. HALT-TEST defaults to a
    simple counter that returns t after `-fixfn-max-iterations',
    to guard against infinite iteration. Otherwise, HALT-TEST
    must be a function that accepts a single argument, the
    current value of X, and returns non-nil as long as iteration
    should continue. In this way, a more sophisticated
    convergence test may be supplied by the caller.

The return value of the lambda is either the fixpoint or, if
iteration halted before converging, a cons with car `halted' and
cdr the final output from HALT-TEST.

In types: (a -> a) -> a -> a."
  (let ((eqfn   (or equal-test 'equal))
        (haltfn (or halt-test
                    (-not
                     (-counter 0 -fixfn-max-iterations)))))
    (lambda (x)
      (let ((re (funcall fn x))
            (halt? (funcall haltfn x)))
        (while (and (not halt?) (not (funcall eqfn x re)))
          (setq x     re
                re    (funcall fn re)
                halt? (funcall haltfn re)))
        (if halt? (cons 'halted halt?)
          re)))))

(defun -prodfn (&rest fns)
  "Take a list of n functions and return a function that takes a
list of length n, applying i-th function to i-th element of the
input list.  Returns a list of length n.

In types (for n=2): ((a -> b), (c -> d)) -> (a, c) -> (b, d)

This function satisfies the following laws:

  (-compose (-prodfn f g ...) (-prodfn f\\=' g\\=' ...)) = (-prodfn (-compose f f\\=') (-compose g g\\=') ...)
  (-prodfn f g ...) = (-juxt (-compose f (-partial \\='nth 0)) (-compose g (-partial \\='nth 1)) ...)
  (-compose (-prodfn f g ...) (-juxt f\\=' g\\=' ...)) = (-juxt (-compose f f\\=') (-compose g g\\=') ...)
  (-compose (-partial \\='nth n) (-prod f1 f2 ...)) = (-compose fn (-partial \\='nth n))"
  (lambda (x) (-zip-with 'funcall fns x)))

;;; Font lock

(defvar dash--keywords
  `(;; TODO: Do not fontify the following automatic variables
    ;; globally; detect and limit to their local anaphoric scope.
    (,(rx symbol-start (| "acc" "it" "it-index" "other") symbol-end)
     0 font-lock-variable-name-face)
    ;; Macros in dev/examples.el.  Based on `lisp-mode-symbol-regexp'.
    (,(rx ?\( (group (| "defexamples" "def-example-group")) symbol-end
          (+ (in "\t "))
          (group (* (| (syntax word) (syntax symbol) (: ?\\ nonl)))))
     (1 font-lock-keyword-face)
     (2 font-lock-function-name-face))
    ;; Symbols in dev/examples.el.
    ,(rx symbol-start (| "=>" "~>" "!!>") symbol-end)
    ;; Elisp macro fontification was static prior to Emacs 25.
    ,@(when (< emacs-major-version 25)
        (let ((macs '("!cdr"
                      "!cons"
                      "-->"
                      "--all?"
                      "--annotate"
                      "--any?"
                      "--count"
                      "--dotimes"
                      "--doto"
                      "--drop-while"
                      "--each"
                      "--each-r"
                      "--each-r-while"
                      "--each-while"
                      "--filter"
                      "--find-index"
                      "--find-indices"
                      "--find-last-index"
                      "--first"
                      "--fix"
                      "--group-by"
                      "--if-let"
                      "--iterate"
                      "--keep"
                      "--last"
                      "--map"
                      "--map-first"
                      "--map-indexed"
                      "--map-last"
                      "--map-when"
                      "--mapcat"
                      "--max-by"
                      "--min-by"
                      "--none?"
                      "--only-some?"
                      "--partition-by"
                      "--partition-by-header"
                      "--reduce"
                      "--reduce-from"
                      "--reduce-r"
                      "--reduce-r-from"
                      "--reductions"
                      "--reductions-from"
                      "--reductions-r"
                      "--reductions-r-from"
                      "--remove"
                      "--remove-first"
                      "--remove-last"
                      "--separate"
                      "--some"
                      "--sort"
                      "--splice"
                      "--splice-list"
                      "--split-when"
                      "--split-with"
                      "--take-while"
                      "--tree-map"
                      "--tree-map-nodes"
                      "--tree-mapreduce"
                      "--tree-mapreduce-from"
                      "--tree-reduce"
                      "--tree-reduce-from"
                      "--tree-seq"
                      "--unfold"
                      "--update-at"
                      "--when-let"
                      "--zip-with"
                      "->"
                      "->>"
                      "-as->"
                      "-doto"
                      "-if-let"
                      "-if-let*"
                      "-lambda"
                      "-let"
                      "-let*"
                      "-setq"
                      "-some-->"
                      "-some->"
                      "-some->>"
                      "-split-on"
                      "-when-let"
                      "-when-let*")))
          `((,(concat "(" (regexp-opt macs 'symbols)) . 1)))))
  "Font lock keywords for `dash-fontify-mode'.")

(defcustom dash-fontify-mode-lighter nil
  "Mode line lighter for `dash-fontify-mode'.
Either a string to display in the mode line when
`dash-fontify-mode' is on, or nil to display
nothing (the default)."
  :package-version '(dash . "2.18.0")
  :group 'dash
  :type '(choice (string :tag "Lighter" :value " Dash")
                 (const :tag "Nothing" nil)))

;;;###autoload
(define-minor-mode dash-fontify-mode
  "Toggle fontification of Dash special variables.

Dash-Fontify mode is a buffer-local minor mode intended for Emacs
Lisp buffers.  Enabling it causes the special variables bound in
anaphoric Dash macros to be fontified.  These anaphoras include
`it', `it-index', `acc', and `other'.  In older Emacs versions
which do not dynamically detect macros, Dash-Fontify mode
additionally fontifies Dash macro calls.

See also `dash-fontify-mode-lighter' and
`global-dash-fontify-mode'."
  :group 'dash :lighter dash-fontify-mode-lighter
  (if dash-fontify-mode
      (font-lock-add-keywords nil dash--keywords t)
    (font-lock-remove-keywords nil dash--keywords))
  (cond ((fboundp 'font-lock-flush) ;; Added in Emacs 25.
         (font-lock-flush))
        ;; `font-lock-fontify-buffer' unconditionally enables
        ;; `font-lock-mode' and is marked `interactive-only' in later
        ;; Emacs versions which have `font-lock-flush', so we guard
        ;; and pacify as needed, respectively.
        (font-lock-mode
         (with-no-warnings
           (font-lock-fontify-buffer)))))

(defun dash--turn-on-fontify-mode ()
  "Enable `dash-fontify-mode' if in an Emacs Lisp buffer."
  (when (derived-mode-p #'emacs-lisp-mode)
    (dash-fontify-mode)))

;;;###autoload
(define-globalized-minor-mode global-dash-fontify-mode
  dash-fontify-mode dash--turn-on-fontify-mode
  :group 'dash)

(defcustom dash-enable-fontlock nil
  "If non-nil, fontify Dash macro calls and special variables."
  :group 'dash
  :set (lambda (sym val)
         (set-default sym val)
         (global-dash-fontify-mode (if val 1 0)))
  :type 'boolean)

(make-obsolete-variable
 'dash-enable-fontlock #'global-dash-fontify-mode "2.18.0")

(define-obsolete-function-alias
  'dash-enable-font-lock #'global-dash-fontify-mode "2.18.0")

;;; Info

(defvar dash--info-doc-spec '("(dash) Index" nil "^ -+ .*: " "\\( \\|$\\)")
  "The Dash :doc-spec entry for `info-lookup-alist'.
It is based on that for `emacs-lisp-mode'.")

(defun dash--info-elisp-docs ()
  "Return the `emacs-lisp-mode' symbol docs from `info-lookup-alist'.
Specifically, return the cons containing their
`info-lookup->doc-spec' so that we can modify it."
  (defvar info-lookup-alist)
  (nthcdr 3 (assq #'emacs-lisp-mode (cdr (assq 'symbol info-lookup-alist)))))

;;;###autoload
(defun dash-register-info-lookup ()
  "Register the Dash Info manual with `info-lookup-symbol'.
This allows Dash symbols to be looked up with \\[info-lookup-symbol]."
  (interactive)
  (require 'info-look)
  (let ((docs (dash--info-elisp-docs)))
    (setcar docs (append (car docs) (list dash--info-doc-spec)))
    (info-lookup-reset)))

(defun dash-unload-function ()
  "Remove Dash from `info-lookup-alist'.
Used by `unload-feature', which see."
  (let ((docs (and (featurep 'info-look)
                   (dash--info-elisp-docs))))
    (when (member dash--info-doc-spec (car docs))
      (setcar docs (remove dash--info-doc-spec (car docs)))
      (info-lookup-reset)))
  nil)

(provide 'dash)
;;; dash.el ends here