1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
#include "TreeShape.h"
#include "../mathlib.h"
#include <cstdio>
#include <cstdlib>
#include <cfloat>
#include <ctime>
void TreeBranchLoadData::fillVertices(Vertex2D* vertices, int branchTier) {
bottomLeft = Vector2 { position.x - width / 2.f, position.y }.rotateAround(rotation, position);
bottomRight = Vector2 { position.x + width / 2.f, position.y }.rotateAround(rotation, position);
topLeft = (Vector2 { position.x - width / 2.f, position.y + height }).rotateAround(rotation, position);
topRight = (Vector2 { position.x + width / 2.f, position.y + height }).rotateAround(rotation, position);
topMidpoint = topLeft + (topRight - topLeft) / 2.f;
vertices[0] = { bottomLeft, color};
vertices[1] = { bottomRight, color};
vertices[2] = { topLeft, color};
vertices[3] = { topLeft, color};
vertices[4] = { topRight, color};
vertices[5] = { bottomRight, color};
};
TreeShapeLoadResult TreeShape::load(Renderer2d* renderer) {
srand ( time(NULL) );
timeElapsedSeconds = 0;
TreeLoadData ld;
numBranches = pow(ld.divisionsPerBranch, ld.numBranchLevels + 1);
numVertices = 6 * numBranches;
TreeBranchLoadData* generationData = new TreeBranchLoadData[numBranches];
updateData = new TreeBranchUpdateData[numBranches];
vertices = new Vertex2D[numVertices];
// The load result will contain information that we can pass on to our leaf renderer.
TreeShapeLoadResult lr;
lr.lowerBounds = Vector2(FLT_MAX, FLT_MAX);
lr.upperBounds = Vector2(FLT_MIN, FLT_MIN);
lr.updateData = updateData;
lr.numBranches = numBranches;
i32 branchIndex = 0;
createBranch(&ld, generationData, numBranches, &branchIndex, 0, ld.trunkWidth, ld.trunkHeight, Vector2 { 300.f, 200.f }, 0, NULL, vertices, &lr);
useShader(renderer->shader);
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(Vertex2D), &vertices[0], GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(renderer->attributes.position);
glVertexAttribPointer(renderer->attributes.position, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), (GLvoid *)0);
glEnableVertexAttribArray(renderer->attributes.color);
glVertexAttribPointer(renderer->attributes.color, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), (GLvoid *)offsetof(Vertex2D, color));
for (i32 idx = 0; idx < 4; idx++) {
glEnableVertexAttribArray(renderer->attributes.vMatrix + idx);
glVertexAttribPointer(renderer->attributes.vMatrix + idx, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), (GLvoid *)(offsetof(Vertex2D, vMatrix) + (idx * 16)));
glVertexAttribDivisor(renderer->attributes.vMatrix + idx, 1);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
delete [] generationData;
return lr;
}
const f32 ninetyDegreeRotation = PI / 2.f;
void TreeShape::createBranch(TreeLoadData* ld, TreeBranchLoadData* generationData, i32 numBranches, i32* branchIndex,
i32 branchLevel, f32 width, f32 height, Vector2 position, f32 rotation,
TreeBranchUpdateData* parent, Vertex2D* vertices, TreeShapeLoadResult* lr) {
TreeBranchLoadData* branchLoadData = &generationData[*branchIndex];
branchLoadData->width = width;
branchLoadData->height = height;
branchLoadData->position = position;
branchLoadData->rotation = rotation;
branchLoadData->fillVertices(&vertices[(*branchIndex) * 6], branchLevel);
// Fil in the bounds for the LeafRenderer later.
if (branchLoadData->topMidpoint.x > lr->upperBounds.x) {
lr->upperBounds.x = branchLoadData->topMidpoint.x;
}
if (branchLoadData->topMidpoint.y > lr->upperBounds.y) {
lr->upperBounds.y = branchLoadData->topMidpoint.y;
}
if (branchLoadData->topMidpoint.x < lr->lowerBounds.x) {
lr->lowerBounds.x = branchLoadData->topMidpoint.x;
}
if (branchLoadData->topMidpoint.y < lr->lowerBounds.y) {
lr->lowerBounds.y = branchLoadData->topMidpoint.y;
}
TreeBranchUpdateData* branchUpdateData = &updateData[*branchIndex];
branchUpdateData->tier = branchLevel;
branchUpdateData->periodOffset = randomFloatBetween(0.f, 2.f * PI);
branchUpdateData->period = randomFloatBetween(3.f, 5.f);
branchUpdateData->amplitude = randomFloatBetween(0.01f, 0.05f);
branchUpdateData->branchToFollow = parent;
branchUpdateData->vertices = &vertices[(*branchIndex) * 6];
if (branchLevel == ld->numBranchLevels) {
return;
}
for (int division = 0; division < ld->divisionsPerBranch; division++) {
// Weight between [0, 1]
float weight = static_cast<f32>(division) / static_cast<f32>(ld->divisionsPerBranch - 1);
// Normalize the weight between [-1, 1]
f32 normalizedWeight = (0.5f - (weight)) * 2.f;
// We want a rotation that takes the current rotation of the branch, and averages it between the two branches.
f32 branchRotationAmount = randomFloatBetween(PI / 8.f, PI / 3.f);
f32 branchRotation = branchLoadData->rotation + (normalizedWeight * branchRotationAmount);
// Since trees are taller vertically, we will find a normalized value that describes how far the direction is from
// being horizontal. If it is closer to 1, we will make the branch taller on average.
f32 verticalHeightScaler = (fabs(fabs(branchRotation) - ninetyDegreeRotation) / ninetyDegreeRotation) * 0.1;
f32 branchWidth = width * randomFloatBetween(ld->trunkWidthScalerMin, ld->trunkWidthScalerMax);
f32 branchHeight = height * randomFloatBetween(ld->trunkHeightScalerMin + verticalHeightScaler, ld->trunkHeightScalerMax + verticalHeightScaler);
// We want the branch to start within the previous branch, so we drop it down into it based off of the rotation.
Vector2 branchOffsetVertical = Vector2{ 0, branchWidth }.rotate(branchRotation);
Vector2 branchPosition = branchLoadData->topLeft + ((branchLoadData->topRight - branchLoadData->topLeft) * weight) - branchOffsetVertical; // Position of branch along the top of the parent branch
(*branchIndex)++;
createBranch(ld, generationData, numBranches, branchIndex, branchLevel + 1, branchWidth, branchHeight, branchPosition, branchRotation, branchUpdateData, vertices, lr);
}
}
void TreeShape::update(f32 dtSeconds) {
timeElapsedSeconds += dtSeconds;
for (i32 bIdx = 0; bIdx < numBranches; bIdx++) {
TreeBranchUpdateData* branchUpdataData = &updateData[bIdx];
// Fade in simulation. We fade in based on the tier.
f32 animationStart = (branchUpdataData->tier * animateStaggerPerTier);
f32 animationEnd = animationStart + animateTimePerTier;
f32 alpha = 0.f;
if (timeElapsedSeconds < animationStart) {
alpha = 0.f;
}
else if (timeElapsedSeconds > animationEnd) {
alpha = 1.f;
}
else {
alpha = (1.f - (animationEnd - timeElapsedSeconds)) / animateTimePerTier;
}
i32 startParentIndex = bIdx * 6;
branchUpdataData->currentOffset.x = branchUpdataData->amplitude * cosf(branchUpdataData->periodOffset + branchUpdataData->period * timeElapsedSeconds);
branchUpdataData->currentOffset.y = branchUpdataData->amplitude * sinf(branchUpdataData->periodOffset + branchUpdataData->period * timeElapsedSeconds);
if (branchUpdataData->branchToFollow != NULL) {
branchUpdataData->currentOffset += branchUpdataData->branchToFollow->currentOffset;
// The root of the branch only moves according to the change of the end of the parent.
branchUpdataData->vertices[0].color.w = alpha;
branchUpdataData->vertices[0].position += branchUpdataData->branchToFollow->currentOffset;
branchUpdataData->vertices[1].color.w = alpha;
branchUpdataData->vertices[1].position += branchUpdataData->branchToFollow->currentOffset;
branchUpdataData->vertices[5].color.w = alpha;
branchUpdataData->vertices[5].position += branchUpdataData->branchToFollow->currentOffset;
}
else {
branchUpdataData->vertices[0].color.w = alpha;
branchUpdataData->vertices[1].color.w = alpha;
branchUpdataData->vertices[5].color.w = alpha;
}
branchUpdataData->vertices[2].color.w = alpha;
branchUpdataData->vertices[2].position += branchUpdataData->currentOffset;
branchUpdataData->vertices[3].color.w = alpha;
branchUpdataData->vertices[3].position += branchUpdataData->currentOffset;
branchUpdataData->vertices[4].color.w = alpha;
branchUpdataData->vertices[4].position += branchUpdataData->currentOffset;
}
}
void TreeShape::render(Renderer2d* renderer) {
setShaderMat4(renderer->uniforms.model, model);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferSubData(GL_ARRAY_BUFFER, 0, numVertices * sizeof(Vertex2D), &vertices[0]);
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, numVertices);
glBindVertexArray(0);
}
void TreeShape::unload() {
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(1, &vbo);
delete[] vertices;
delete [] updateData;
timeElapsedSeconds = 0;
vertices = NULL;
updateData = NULL;
}
|