1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#include "Snowflake.h"
#include "../Renderer2d.h"
#include "../mathlib.h"
#include "../list.h"
#include <cstdio>
/*
What else to do?
- Windstream that blows a certain selection of snowflakes in a loop-dee-loop pattern
- Snowflakes that land on the ground and melt
- Snowflakes that spin along the Y-axis for a three dimensional effect
*/
const Vector4 snowColor = Vector4(1.0, 0.98, 0.98, 1);
const Vector2 NUM_ARMS_RANGE = Vector2(6.f, 8.f);
const Vector2 RADIUS_RANGE = Vector2(8.f, 32.f);
const Vector2 VELOCITY_RANGE_X = Vector2(-10.f, 10.f);
const Vector2 VELOCITY_RANGE_Y = Vector2(-100.f, -85.f);
const Vector2 ROTATION_VELOCITY_RANGE = Vector2(-PI / 8.f, PI / 8.f);
const Vector2 WIND_VELOCITY_RANGE_X = Vector2(-3.f, 3.f);
const Vector2 WIND_VELOCITY_RANGE_Y = Vector2(3.f, 10.f);
const f32 GRAVITY = 5.f;
inline void generateSnowflakeArm(f32 width, f32 height, f32 angle, matte::List<Vertex2D>* vertices, Mat4x4 transform = Mat4x4()) {
f32 halfWidth = width / 2.f;
Vector2 leftStart = transform * Vector2(-halfWidth, 0).rotate(angle);
Vector2 leftEnd = transform * Vector2(-halfWidth, height).rotate(angle);
Vector2 rightStart = transform * Vector2(halfWidth, 0).rotate(angle);
Vector2 rightEnd = transform * Vector2(halfWidth, height).rotate(angle);
vertices->add({ leftStart, snowColor, Mat4x4() });
vertices->add({ leftEnd, snowColor, Mat4x4() });
vertices->add({ rightEnd, snowColor, Mat4x4() });
vertices->add({ leftStart, snowColor, Mat4x4() });
vertices->add({ rightEnd, snowColor, Mat4x4() });
vertices->add({ rightStart, snowColor, Mat4x4() });
}
/**
Fills in the vertices array vertices that represent a snowflake shape. The snowflake shape consists
of numArms jutting out of the center radially. The center of the flake is connected. The radius is
used to determine the length of the arms. The first third of each arm is barren, after which branches
extends on either side of the arm at an angle of about 60 degrees. Each branch can itself have tiny
sub branches jutting out of it, but these should be not nearly as large as the regular branches.
With all of this in mind, we should be able to build a convincing snowflake.
:param vertices List of vertices to be filled in
:param numArms Number of arms radially sticking out of the snowflake
:param radius Length of the snowflake arms
*/
inline void generateSnowflakeShape(matte::List<Vertex2D>* vertices, i32 numArms, f32 radius, f32 armWidthRatio = 0.08f) {
f32 innerRadius = 0;
f32 outerRadius = 2 * radius;
f32 dx = ((2 * PI) / numArms);
for (i32 armIndex = 0; armIndex < numArms; armIndex++) {
f32 armAngle = dx * armIndex;
generateSnowflakeArm(armWidthRatio * radius, radius, armAngle, vertices);
f32 armLeftAngle = DEG_TO_RAD(60.f);
f32 armRightAngle = DEG_TO_RAD(-60.f);
const i32 NUM_SUB_ARMS = 4;
for (i32 subArmIndex = 0; subArmIndex < NUM_SUB_ARMS; subArmIndex++) {
f32 height = (radius / static_cast<f32>(subArmIndex));
f32 width = (armWidthRatio / (subArmIndex + 1)) * height;
f32 transY = (radius / (NUM_SUB_ARMS + 1)) * (subArmIndex + 1);
Vector2 translation = Vector2(0, transY).rotate(armAngle);
generateSnowflakeArm(width, height, armAngle, vertices, Mat4x4().translateByVec2(translation).rotate2D(armLeftAngle));
generateSnowflakeArm(width, height, armAngle, vertices, Mat4x4().translateByVec2(translation).rotate2D(armRightAngle));
}
}
}
inline void initFlake(SnowflakeParticleRenderer* renderer, SnowflakeUpdateData* ud) {
ud->radius = randomFloatBetween(RADIUS_RANGE.x, RADIUS_RANGE.y);
ud->vtxIdx = renderer->vertices.numElements;
generateSnowflakeShape(&renderer->vertices,
randomFloatBetween(NUM_ARMS_RANGE.x, NUM_ARMS_RANGE.y),
ud->radius);
ud->numVertices = renderer->vertices.numElements - ud->vtxIdx;
ud->velocity = Vector2(randomFloatBetween(VELOCITY_RANGE_X.x, VELOCITY_RANGE_X.y), randomFloatBetween(VELOCITY_RANGE_Y.x, VELOCITY_RANGE_Y.y));
ud->position = Vector2(randomFloatBetween(0, renderer->xMax), randomFloatBetween(renderer->yMax, 4 * renderer->yMax));
ud->rotateVelocity = randomFloatBetween(ROTATION_VELOCITY_RANGE.x, ROTATION_VELOCITY_RANGE.y);
}
void SnowflakeParticleRenderer::load(SnowflakeLoadParameters params, Renderer2d* renderer) {
numSnowflakes = params.numSnowflakes;
updateData = new SnowflakeUpdateData[params.numSnowflakes];
xMax = static_cast<f32>(renderer->context->width);
yMax = static_cast<f32>(renderer->context->height);
vertices.deallocate();
vertices.growDynamically = true;
// Initialize each snow flake with its shape
for (i32 s = 0; s < numSnowflakes; s++) {
auto ud = &updateData[s];
initFlake(this, ud);
}
useShader(renderer->shader);
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, vertices.numElements * sizeof(Vertex2D), &vertices.data[0], GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(renderer->attributes.position);
glVertexAttribPointer(renderer->attributes.position, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), (GLvoid *)0);
glEnableVertexAttribArray(renderer->attributes.color);
glVertexAttribPointer(renderer->attributes.color, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), (GLvoid *)offsetof(Vertex2D, color));
for (i32 idx = 0; idx < 4; idx++) {
i32 offset = (4 * sizeof(f32)) * idx;
glEnableVertexAttribArray(renderer->attributes.vMatrix + idx);
glVertexAttribPointer(renderer->attributes.vMatrix + idx,
4,
GL_FLOAT,
GL_FALSE,
sizeof(Vertex2D),
(GLvoid *)(offsetof(Vertex2D, vMatrix) + offset));
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
inline void resetFlake(SnowflakeParticleRenderer* renderer, SnowflakeUpdateData* ud) {
ud->position.y = 2 * renderer->yMax;
ud->velocity = Vector2(randomFloatBetween(-10, 10), randomFloatBetween(-100, -85));
ud->rotation = 0;
}
inline void updateFlake(SnowflakeParticleRenderer* renderer, SnowflakeUpdateData* ud, i32 s, f32 dtSeconds) {
ud->velocity = ud->velocity + Vector2(0, -(GRAVITY * dtSeconds));
//if (addWind) ud->velocity += renderer->windSpeed;
ud->position += ud->velocity * dtSeconds;
ud->rotation += ud->rotateVelocity * dtSeconds;
Mat4x4 m = Mat4x4().translateByVec2(ud->position).rotate2D(ud->rotation);
for (i32 v = ud->vtxIdx; v < (ud->vtxIdx + ud->numVertices); v++) {
renderer->vertices.data[v].vMatrix = m;
}
if (ud->position.y <= -ud->radius) {
resetFlake(renderer, ud);
}
}
void SnowflakeParticleRenderer::update(f32 dtSeconds) {
timeUntilNextWindSeconds -= dtSeconds;
if (timeUntilNextWindSeconds < 0) {
timeUntilNextWindSeconds = randomFloatBetween(2.5f, 10.f);
}
for (i32 s = 0; s < numSnowflakes; s++) {
SnowflakeUpdateData* ud = &updateData[s];
updateFlake(this, ud, s, dtSeconds);
}
}
void SnowflakeParticleRenderer::render(Renderer2d* renderer) {
setShaderMat4(renderer->uniforms.model, model);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferSubData(GL_ARRAY_BUFFER, 0, vertices.numElements * sizeof(Vertex2D), &vertices.data[0]);
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, vertices.numElements);
glBindVertexArray(0);
}
void SnowflakeParticleRenderer::unload() {
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(1, &vbo);
vao = 0;
vbo = 0;
vertices.deallocate();
delete [] updateData;
}
|