summaryrefslogtreecommitdiff
path: root/2d/_collisions/pill_line/main.cpp
blob: b9315a8b98c5bbbb2ad372f78b08f8f141b8cf30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#include "../../../shared_cpp/OrthographicRenderer.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/WebglContext.h"
#include "../../../shared_cpp/mathlib.h"
#include "../../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>

// Side note: It is Eastertime, so I chose this easter color palette. Enjoy: https://htmlcolors.com/palette/144/easter

struct Rigidbody {
    Vector2 force = { 0, 0 };
    Vector2 velocity = { 0, 0 };
    Vector2 position = { 0, 0 };
    float32 rotationalVelocity  = 0.f;
    float32 rotation = 0.f;
    float32 mass = 1.f;
    float32 cofOfRestition = 1.f;
    float32 momentOfInertia = 0.f;

    void reset() {
        force = { 0, 0 };
        velocity = { 0, 0 };
        rotationalVelocity = 0.f;
        rotation = 0.f;
    }

    void applyForce(Vector2 f) {
        force += f;
    }

    void applyGravity(float32 deltaTimeSeconds) {
        velocity += (Vector2 { 0.f, -96.f } * deltaTimeSeconds);
    }

    void update(float32 deltaTimeSeconds) {
        applyGravity(deltaTimeSeconds);
        
        Vector2 acceleration = force / mass;
        velocity += (acceleration * deltaTimeSeconds);
        position += (velocity * deltaTimeSeconds);
        force = Vector2 { 0.f, 0.f };

        rotation += (rotationalVelocity * deltaTimeSeconds);
    }

    void setMomentOfInertia(float32 moi) {
        momentOfInertia = moi;
    }
};

struct Pill {
    OrthographicShape shape;
    Rigidbody body;
    float32 a = 0;
    float32 b = 0;

    Pill copy() {
        Pill retval;
        retval.shape = shape;
        retval.body = body;
        retval.a = a;
        retval.b = b;
        return retval;
    }

    void load(OrthographicRenderer* renderer, float32 numSegments, float32 width, float32 height) {
        // Note that a so-called "pill" is simply an ellipse.
        // Equation of an ellipse is:
        //
        //	x^2 / a^2 + y^2 / b^2 = 1
        //
        // or, in parametric form:
        //
        // x = a * cos(t), y = b * sin(t)
        //
        float32 angleIncrements = (2.f * PI) / numSegments;
        uint32 numVertices = static_cast<uint32>(numSegments * 3.f);
        OrthographicVertex* vertices = new OrthographicVertex[numVertices];

        a = width / 2.f;
        b = height / 2.f;

        Vector4 color = Vector4().fromColor(243,166,207, 255);

        for (uint32 vertexIndex = 0; vertexIndex < numVertices; vertexIndex += 3) {
            // Create a single "slice" of the ellipse (like a pizza)
            float32 currAngle = (vertexIndex / 3.f) * angleIncrements;
            float32 nextAngle = (vertexIndex / 3.f + 1.f) * angleIncrements;

            vertices[vertexIndex].position = Vector2 { 0.f, 0.f };
            vertices[vertexIndex].color = color;

            vertices[vertexIndex + 1].position = Vector2 { a * cosf(currAngle), b * sinf(currAngle) };
            vertices[vertexIndex + 1].color = color;

            vertices[vertexIndex + 2].position = Vector2 { a * cosf(nextAngle), b * sinf(nextAngle) };
            vertices[vertexIndex + 2].color = color;
        }

        shape.load(vertices, numVertices, renderer);
        body.reset();

        body.mass = 100.f;
        body.momentOfInertia = (body.mass * (a * a + b * b)) / 4.f;

        a = width / 2.f;
        b = height / 2.f;

        delete[] vertices;
    }

    void update(float32 deltaTimeSeconds) {
        body.update(deltaTimeSeconds);
        shape.model = Mat4x4().translateByVec2(body.position).rotate2D(body.rotation);
    }

    void render(OrthographicRenderer* renderer) {
        shape.render(renderer);
    }

    void unload() {
        shape.unload();
    }
};

struct LineSegment {
    OrthographicShape shape;
    Rigidbody body;
    Vector2 start;
    Vector2 end;
    float32 length;
    Vector2 normal;
    OrthographicVertex vertices[2];

    void load(OrthographicRenderer* renderer, Vector4 color, Vector2 inStart, Vector2 inEnd) {
        start = inStart;
        end = inEnd;
        length = (start - end).length();
        vertices[0].position = start;
        vertices[0].color = color;
        vertices[1].position = end;
        vertices[1].color = color;
        normal = (end - start).getPerp().normalize();
        shape.load(vertices, 2, renderer);

        body.reset();
        body.mass = 1000000000.f;
        body.cofOfRestition = 1.f;
        body.rotationalVelocity = 0;
        body.velocity = Vector2();
        body.momentOfInertia = body.mass * (length / 2.f);
    }

    void render(OrthographicRenderer* renderer) {
        shape.render(renderer, GL_LINES);
    }

    void unload() {
        shape.unload();
    }

    Vector2 getPointOnLine(float32 t) {
        return {
            start.x + (end.x - start.x) * t,
            start.y + (end.y - start.y) * t,
        };
    }

    Vector2 getNormal() {
        return (end - start).getPerp().normalize();
    }
};

struct IntersectionResult {
    bool intersect = false;
    Vector2 collisionNormal;
    Vector2 relativeVelocity;
    Vector2 firstPointOfApplication;
    Vector2 secondPointOfApplication;
};

EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);

void load();
void update(float32 time, void* userData);
void unload();
IntersectionResult getIntersection(Pill* pill, LineSegment* segment);
void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir);

// Global Variables
WebglContext context;
OrthographicRenderer renderer;
Pill pill;
MainLoop mainLoop;
LineSegment segmentList[4];

int main() {
    context.init("#gl_canvas");
    emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
    emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
    return 0;
}

void load() {
    renderer.load(&context);

    pill.body.position = Vector2 { context.width / 4.f, context.height / 2.f };
    pill.load(&renderer, 64, 100.f, 50.f);

    segmentList[0].load(&renderer, Vector4().fromColor(191, 251, 146, 255.f), Vector2 { 50.f, 0.f }, Vector2 { 50.f, static_cast<float>(context.height) });
    segmentList[1].load(&renderer, Vector4().fromColor(159, 224, 210, 255.f), Vector2 { context.width - 50.f, 0.f }, Vector2 { context.width - 50.f, static_cast<float>(context.height) });
    segmentList[2].load(&renderer, Vector4().fromColor(248, 255, 156, 255.f), Vector2 { 50.f, 50.f }, Vector2 { context.width - 50.f, 150.f });
    segmentList[3].load(&renderer, Vector4().fromColor(205, 178, 214, 255.f), Vector2 { 50.f, 150.f }, Vector2 { context.width - 50.f, 50.f });

    mainLoop.run(update);
}

IntersectionResult getIntersection(Pill* pill, LineSegment* segment) {
    IntersectionResult result;
    Mat4x4 inverseModel = pill->shape.model.inverse();
    Vector2 start = inverseModel * segment->start;
    Vector2 end = inverseModel * segment->end;
    Vector2 diff = end - start;
    float32 A = (diff.x * diff.x) / (pill->a * pill->a) + (diff.y * diff.y) / (pill->b * pill->b);
    float32 B = ((2 * start.x) * (end.x - start.x)) / (pill->a * pill->a) + ((2 * start.y) * (end.y - start.y)) / (pill->b * pill->b);
    float32 C = (start.x * start.x) / (pill->a * pill->a) + (start.y * start.y) / (pill->b * pill->b) - 1.f;

    float32 determinant = B * B - 4 * A * C;
    if (determinant < 0.f) {    
        result.intersect = false;
        return result;
    }

    float32 t;
    if (determinant < 0.001f) {
        t = -B / (2.f * A);
    } else {
        t = (-B + sqrtf(determinant)) / (2.f * A);
        // Or: t = (-B - sqrtf(determinant)) / (2 * A);
    }

    Vector2 pointOnLine = segment->getPointOnLine(t); // This point is in world space and line space, since the line is in world space

    Vector2 pointOnTransformedLine = {
        start.x + (end.x - start.x) * t,
        start.y + (end.y - start.y) * t
    };

    Vector2 pointOnEllipse = (pointOnTransformedLine);

    Vector2 normal = segment->getNormal();

    result.intersect = true;
    result.relativeVelocity = pill->body.velocity - segment->body.velocity;
    result.collisionNormal = normal;
    result.firstPointOfApplication = pointOnEllipse;
    result.secondPointOfApplication = pointOnLine;

    return result;
}

void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir) {
    Vector2 relativeVelocity = ir->relativeVelocity;
    Vector2 collisionNormal  = ir->collisionNormal;
    Vector2 firstPerp        = ir->firstPointOfApplication.getPerp();
    Vector2 secondPerp       = ir->secondPointOfApplication.getPerp();

    float32 cofOfRestition = (first->cofOfRestition + second->cofOfRestition) / 2.f;
    float32 lNumerator = (relativeVelocity * -(1.f + cofOfRestition)).dot(collisionNormal);
    float32 lLinearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
    float32 lRotationalDenomPart = powf(firstPerp.dot(collisionNormal), 2.f) / first->momentOfInertia + powf(secondPerp.dot(collisionNormal), 2) / second->momentOfInertia;

    //ir->firstPointOfApplication.printDebug("PoA");
    //firstPerp.printDebug("PoA Perp");
    //collisionNormal.printDebug("Normal");
    //printf("Dot: %f\n", firstPerp.dot(collisionNormal));

    float32 lImpulseMagnitude = lNumerator / (lLinearDenomPart + lRotationalDenomPart);

    first->velocity = first->velocity + (collisionNormal * (lImpulseMagnitude / first->mass));
    second->velocity = second->velocity - (collisionNormal * (lImpulseMagnitude / second->mass));
    first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * lImpulseMagnitude) / first->momentOfInertia;
    second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * lImpulseMagnitude) / second->momentOfInertia;
}

void update(float32 deltaTimeSeconds, void* userData) {
    // Update
    Pill copyPill = pill.copy();
    pill.update(deltaTimeSeconds);

    // Intersections
    for (int32 lineIdx = 0; lineIdx < 4; lineIdx++) {
        IntersectionResult ir = getIntersection(&pill, &segmentList[lineIdx]);
        if (ir.intersect) {

            // Find the exact moment that the intersection happens by rewinding the simulation until we're not intersecting
            IntersectionResult subIr = ir;
            float32 subdividedTimeSeconds = deltaTimeSeconds;
            do {
                ir = subIr;

                pill = copyPill.copy();
                subdividedTimeSeconds /= 2.f;
                pill.update(subdividedTimeSeconds);

                subIr = getIntersection(&pill, &segmentList[lineIdx]);
                if (subdividedTimeSeconds <= 0.f) {
                    printf("Error: Should not be happening.\n");
                    break;
                }
            } while (subIr.intersect);

            printf("Found intersection at timestamp: %f\n", subdividedTimeSeconds);
            resolveCollision(&pill.body, &segmentList[lineIdx].body, &ir);
            deltaTimeSeconds = deltaTimeSeconds - subdividedTimeSeconds;
            pill.update(deltaTimeSeconds);
        }
    }

    // Render
    renderer.render();
    pill.shape.render(&renderer);

    for (int32 segmentIndex = 0; segmentIndex < 4; segmentIndex++) {
        segmentList[segmentIndex].render(&renderer);
    }
}

void unload() {
    mainLoop.stop();
    pill.unload();
    renderer.unload();
    for (int32 segmentIndex = 0; segmentIndex < 4; segmentIndex++) {
        segmentList[segmentIndex].unload();
    }
}

//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Play clicked\n");
    
    load();
    return true;
}

EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Stop clicked\n");
    unload();
    return true;
}