summaryrefslogtreecommitdiff
path: root/2d/_collisions/polygon_polygon.html.content
blob: ffa9b15ea86672bed1c323fc5e8f1b92b2a0f738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
<script src="./polygon_polygon/dist/output.js"></script>
<script>
  window.onload = function() {
      var lPlayElement = document.getElementById('gl_canvas_play'),
          lStopElement = document.getElementById('gl_canvas_stop');
      lPlayElement.addEventListener('click', function() {
          lPlayElement.style.display = 'none';
          lStopElement.style.display = 'block';
      });
      lStopElement.addEventListener('click', function() {
          lStopElement.style.display = 'none';
          lPlayElement.style.display = 'block';
      });
  }
  
</script>
<article>
  <h1>Separating Axis Theorem</h1>
  <section>
    <p>
      The Separating Axis Theorem (SAT) provides a way to find the intersection between any <i>n</i>-sided <a href='https://ianqvist.blogspot.com/2009/09/convex-polygon-based-collision.html'>convex</a> polygon or circle. In this tutorial, I will explain how this theorem works, and how you can use it to both detect and resolve collisions in your simulation.
    </p>
  </section>
  <section>
    <h2>Explanation of Separating Axis Theorem</h2>
    <p>
      SAT makes use of vector projection to figure out whether or not two concave polygons are intersecting. The way to think about it is this:
      
      <br/>
      <br/>

      Given two shapes <b>A</b> and <b>B</b>.

      Imagine we could isolate a single edge of A and shine a light on it.

      
    </p>
  </section>
  <section>
    <h2>Algorithm for Finding the Intersection</h2>
    <p>
      Given two polygons <b>A</b> and <b>B</b>:
      <ol>
        <li>For each edge on <b>A</b>, get the normal <i>n</i> of that edge.</li>
        <li>Project each vertex <i>v</i> of <b>A</b> onto <i>n</i>. Return the minimum and maximum projection of all vertices.</li>
        <li>Repeat Step 2 for polygon <b>B</b>.</li>
        <li>If the min and max projections found in Steps 2 and 3 do <b>NOT</b> overlap, the polygons are not intersecting. Return false.</li>
        <li>If the projections overlap for each edge of both shapes, the shapes are intersecting. Return true.</li>
      </ol>

      And that is all there is to <i>finding</i> the intersection between two convex polygons.
    </p>
  </section>
  <section>
    <h2>SAT Collision Resolution</h2>
    <p>
      Now that we know our objects have intersecting, we want to be able to send them tumbling away from each other to simulate a collision. To do this, we will need to find the following things:
      <ul>
        <li><b>Collision Normal</b>: in what direction, point towards object <b>A</b>, did the polygons intersect</li>
        <li><b>Point of Application</b>: at what point on each object did the objects first intersect</li>
        <li><b>Relative Velocity</b>: easily found by taking the difference between the two velocities.
      </ul>

      <h3>Collision Normal</h3>
      <p>
        
      </p>
    </p>
  </section>
  <section>
	<h2>
	  Live Example of Intersection Detection
	</h2>
    <div class="opengl_canvas_container">
      <canvas id="gl_canvas" width="800" height="600"></canvas>
      <button id="gl_canvas_play" class="play_button">
        Play
      </button>
      <button id="gl_canvas_stop" class="stop_button">
        Stop
      </button>
    </div>
  </section>
  <footer id="references">
    <h2>References</h2>
    <ul>
      <li><a href="https://en.wikipedia.org/wiki/Vector_projection">Vector Projection Wikapedia</a></li>
    </ul>
  </footer>
</article>