1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="/index.css">
<title>Physics for Games</title>
<link rel="shortcut icon" href="favicon/favicon.ico" type="image/x-icon">
<meta name="description" content="A place to learn all about real-time physics simulations through descriptions, code snippets, and example programs all written in C++ and OpenGL.">
<meta name="og:description" content="A place to learn all about real-time physics simulations through descriptions, code snippets, and example programs all written in C++ and OpenGL.">
</head>
<body>
<header>
<h1><a title="physicsforgames.com" href="/">Physics for Games</a></h1>
</header>
<main>
<nav>
<ul class="outer-tree">
<li><a href="/">Introduction</a></li>
<li>
<span>🏀<span>2D</span></span>
<ul class="inner-tree">
<li><label>Rigidbody</label></li>
<li><a title="/2d/rigidbody/rigidbody_1.html" href="/2d/rigidbody/rigidbody_1.html">Linear Forces</a></li>
<li><a title="/2d/rigidbody/rigidbody_2.html" href="/2d/rigidbody/rigidbody_2.html">Rotational Forces</a></li>
<li><a title="/2d/rigidbody/rigidbody_3.html" href="/2d/rigidbody/rigidbody_3.html">Collisions</a></li>
<li><label>Collisions</label></li>
<li><a title="/2d/_collisions/rectangle_line.html" href="/2d/_collisions/rectangle_line.html">Rectangle-Line</a></li>
<li><a title="/2d/_collisions/rectangle_rectangle.html" href="/2d/_collisions/rectangle_rectangle.html">Rectangle-Rectangle</a></li>
<li><a title="/2d/_collisions/polygon_polygon.html" href="/2d/_collisions/polygon_polygon.html">Separating Axis Theorem</a></li>
</ul>
</li>
<li>
<span>🌠<span>3D</span></span>
<ul class="inner-tree">
<li><label>Rigidbody</label></li>
<li><a title="/3d/rigidbody.html" href="/3d/rigidbody.html">Rigidbody in 3D</a></li>
</ul>
</li>
<li>
<span>🔧<span>WebAssembly</span></span>
<ul class="inner-tree">
<li><a title="/intro/intro.html" href="/intro/intro.html">Introduction</a></li>
</ul>
</li>
<li>
<span>🛈<span>About</span></span>
<ul class="inner-tree">
<li><a title="/roadmap.html" href="/roadmap.html">Roadmap</a></li>
</ul>
</li>
</ul>
</nav>
<script src="./polygon_polygon/dist/output.js"></script>
<script>
window.onload = function() {
var lPlayElement = document.getElementById('gl_canvas_play'),
lStopElement = document.getElementById('gl_canvas_stop');
lPlayElement.addEventListener('click', function() {
lPlayElement.style.display = 'none';
lStopElement.style.display = 'block';
});
lStopElement.addEventListener('click', function() {
lStopElement.style.display = 'none';
lPlayElement.style.display = 'block';
});
}
</script>
<article>
<h1>Separating Axis Theorem</h1>
<section>
<p>
The Separating Axis Theorem (SAT) provides a way to find the intersection between any <i>n</i>-sided <a href='https://ianqvist.blogspot.com/2009/09/convex-polygon-based-collision.html'>convex</a> polygon or circle. In this tutorial, I will explain how this theorem works, and how you can use it to both detect and resolve collisions in your simulation.
</p>
</section>
<section>
<h2>Explanation of Separating Axis Theorem</h2>
<p>
SAT makes use of vector projection to figure out whether or not two concave polygons are intersecting. The way to think about it is this:
<br/>
<br/>
Given two shapes <b>A</b> and <b>B</b>.
Imagine we could isolate a single edge of A and shine a light on it.
</p>
</section>
<section>
<h2>Algorithm for Finding the Intersection</h2>
<p>
Given two polygons <b>A</b> and <b>B</b>:
<ol>
<li>For each edge on <b>A</b>, get the normal <i>n</i> of that edge.</li>
<li>Project each vertex <i>v</i> of <b>A</b> onto <i>n</i>. Return the minimum and maximum projection of all vertices.</li>
<li>Repeat Step 2 for polygon <b>B</b>.</li>
<li>If the min and max projections found in Steps 2 and 3 do <b>NOT</b> overlap, the polygons are not intersecting. Return false.</li>
<li>If the projections overlap for each edge of both shapes, the shapes are intersecting. Return true.</li>
</ol>
And that is all there is to <i>finding</i> the intersection between two convex polygons.
</p>
</section>
<section>
<h2>SAT Collision Resolution</h2>
<p>
Now that we know our objects have intersecting, we want to be able to send them tumbling away from each other to simulate a collision. To do this, we will need to find the following things:
<ul>
<li><b>Collision Normal</b>: in what direction, point towards object <b>A</b>, did the polygons intersect</li>
<li><b>Point of Application</b>: at what point on each object did the objects first intersect</li>
<li><b>Relative Velocity</b>: easily found by taking the difference between the two velocities.
</ul>
<h3>Collision Normal</h3>
<p>
</p>
</p>
</section>
<section>
<h2>
Live Example of Intersection Detection
</h2>
<div class="opengl_canvas_container">
<canvas id="gl_canvas" width="800" height="600"></canvas>
<button id="gl_canvas_play" class="play_button">
Play
</button>
<button id="gl_canvas_stop" class="stop_button">
Stop
</button>
</div>
</section>
<footer id="references">
<h2>References</h2>
<ul>
<li><a href="https://en.wikipedia.org/wiki/Vector_projection">Vector Projection Wikapedia</a></li>
</ul>
</footer>
</article>
</main>
</body>
</html>
|