summaryrefslogtreecommitdiff
path: root/2d/_collisions/polygon_polygon/main.cpp
blob: dc0505eda55376d20f60edec9a06a6ce3beddde7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#include "../../../shared_cpp/Renderer2d.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/WebglContext.h"
#include "../../../shared_cpp/mathlib.h"
#include "../../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>
#include <cfloat>

float32 gravityDirection = -1;

struct Impulse {
    Vector2 force = { 0, 0 };
    float32 timeOfApplicationSeconds = 0.25f;
    float32 timeAppliedSeconds = 0.f;
    bool isDead = false;
};

const int32 NUM_IMPULSES = 4;

struct Rigidbody {
    int32 numImpulses = 0;
    Impulse activeImpulses[NUM_IMPULSES];
    Vector2 velocity = { 0, 0 };
    Vector2 position = { 0, 0 };
    float32 mass = 1.f;
    float32 rotationalVelocity  = 0.f;
    float32 rotation = 0.f;
    float32 cofOfRestition = 1.f;
    float32 momentOfInertia = 1.f;

	Rigidbody copy() {
		return {
			numImpulses,
			{ activeImpulses[0], activeImpulses[1], activeImpulses[2], activeImpulses[3] },
			velocity,
			position,
			mass,
			rotationalVelocity,
			rotation,
			cofOfRestition,
			momentOfInertia
		};
	}

    void reset() {
        numImpulses = 0;
        velocity = { 0, 0 };
        rotationalVelocity = 0.f;
    }

    void setMomentOfInertia(float32 moi) {
        momentOfInertia = moi;
    }

    void applyImpulse(Impulse i) {
        if (numImpulses > NUM_IMPULSES) {
            printf("Unable to apply impulse. Buffer full.\n");
            return;
        }

        activeImpulses[numImpulses] = i;
        numImpulses++;
    }

    void applyGravity(float32 deltaTimeSeconds) {
        velocity += (Vector2 { 0.f, gravityDirection * 100.f } * deltaTimeSeconds);
    }

    void update(float32 deltaTimeSeconds) {
        applyGravity(deltaTimeSeconds);

        Vector2 force;
        for (int32 idx = 0; idx < numImpulses; idx++) {
            Impulse& i = activeImpulses[idx];

            float32 nextTimeAppliedSeconds = i.timeAppliedSeconds + deltaTimeSeconds;
            if (nextTimeAppliedSeconds >= i.timeOfApplicationSeconds) {
                nextTimeAppliedSeconds = i.timeOfApplicationSeconds; // Do the remainder of the time
                i.isDead = true;
            }
            
            float32 impulseDtSeconds = nextTimeAppliedSeconds - i.timeAppliedSeconds;
            Vector2 forceToApply = i.force * (impulseDtSeconds / i.timeOfApplicationSeconds);
            force += forceToApply;
            

            i.timeAppliedSeconds = nextTimeAppliedSeconds;
        }

        Vector2 acceleration = force / mass;
        velocity += (acceleration * deltaTimeSeconds);
        position += (velocity * deltaTimeSeconds);
        rotation += (rotationalVelocity * deltaTimeSeconds);

        // Cleanup any impulses that have expired in the mean time
        for (int32 idx = 0; idx < numImpulses; idx++) {
            if (activeImpulses[idx].isDead) {
                for (int j = idx + 1; j < numImpulses; j++) {
                    activeImpulses[j - 1] = activeImpulses[j];
                }

                idx = idx - 1;
                numImpulses--;
            }
        }
    }
};

struct IntersectionResult {
    bool intersect = false;
    Vector2 collisionNormal;
    Vector2 relativeVelocity;
    Vector2 firstPointOfApplication;
    Vector2 secondPointOfApplication;
};

struct Edge {
	Vector2 normal;
	Vector2 start;
	Vector2 end;
};

struct ConvexPolygon {
	Mesh2d shape;
	Rigidbody body;
	Rigidbody previousBody;
	Vector4 color;
	int32 numVertices = 3;
	float32 radius = 0.f;

    Vector2* originalVertices;
    Vector2* transformedVertices;
    Edge* edges;

	void load(Renderer2d* renderer) {
        transformedVertices = new Vector2[numVertices]; // This will be used for SAT calculations later
        originalVertices = new Vector2[numVertices];

		// Generate the shape with numVertices many sides in a "fan" shape (i.e. 3  vertices per vertex)
		// The shape will have all equal sides, just to make it easier on me. Therefore, it will fit inside
		// the conditions of a circle, which is fun. Before anyone gets mad: I know I can avoid recalculating
		// a lot of these cosines and sines. I will be okay; I will live. The bigger problem with this demo
		// is the 2k lines of JavaScript that are required to display it.
		int32 verticesNeeded = numVertices * 3;
		float32 angleIncrements = (2.f * PI) / static_cast<float32>(numVertices);
		Vertex2d* shaderVertices = new Vertex2d[verticesNeeded];
		for (int32 vidx = 0; vidx < numVertices; vidx++) {
			int32 indexPosition = vidx * 3;
			
			float32 firstAngle = angleIncrements * vidx;
		    shaderVertices[indexPosition].position = {  cosf(firstAngle) * radius, sinf(firstAngle) * radius };

            originalVertices[vidx] = shaderVertices[indexPosition].position;

		    shaderVertices[indexPosition + 1].position = {  0.f, 0.f };

			float32 secondAngle = angleIncrements * (vidx + 1);
			shaderVertices[indexPosition + 2].position = {  cosf(secondAngle) * radius, sinf(secondAngle) * radius };

			// Apply some global stylings
			for (int subIdx = 0; subIdx < 3; subIdx++) {
			    shaderVertices[indexPosition + subIdx].color = color.toNormalizedColor();
			}
		}

		shape.load(shaderVertices, verticesNeeded, renderer);
		delete[] shaderVertices;

        edges = new Edge[numVertices]; // This will be filled in later when we are doing our SAT calculation.

        // Calculate moment of inertia
        body.momentOfInertia = (PI * (radius * radius * body.mass)) / 4.f * 10;
	}

	void update(float32 dtSeconds) {
		previousBody = body.copy();
		
		body.update(dtSeconds);
		shape.model = Mat4x4().translateByVec2(body.position).rotate2D(body.rotation);
	}

    void calculateTransformedVertices() {
        // Populate the current position of our edges. Note that this might be slow depending
        // on how many edges your shaped have.
        for (int vidx = 0; vidx < numVertices; vidx++) {
            Vector2 start = shape.model * originalVertices[vidx];
            transformedVertices[vidx] = start;

            Vector2 end = shape.model * originalVertices[vidx == numVertices - 1 ? 0 : vidx + 1];
            edges[vidx] = { (end - start).getPerp(), start, end };
        }
    }

    void restorePreviousBody() {
        body = previousBody.copy();
    }

	void render(Renderer2d* renderer) {
		shape.render(renderer);
	}

	void unload() {
		shape.unload();

        delete[] originalVertices;
        originalVertices = NULL;

        delete[] transformedVertices;
        transformedVertices = NULL;

        delete[] edges;
        edges = NULL;
	}
};

EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onGravityReversed(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);;

void load();
void update(float32 time, void* userData);
void unload();

WebglContext context;
Renderer2d renderer;
MainLoop mainLoop;
ConvexPolygon polygons[4];

int main() {
	context.init("#gl_canvas");
    emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
    emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
    emscripten_set_click_callback("#reverse_gravity", NULL, false, onGravityReversed);
    return 0;
}

void load() {
    renderer.load(&context);

	for (int index = 0; index < 4; index++) {
        polygons[index].body.reset();

		if (index == 0) {
			polygons[index].body.position = { context.width / 4.f, context.height / 4.f };
            polygons[index].body.velocity = { 100.f, 200.f };
            polygons[index].body.mass = 2.f;
		} else if (index == 1) {
			polygons[index].body.position = { context.width / 4.f, context.height * (3.f /4.f) };
            polygons[index].body.velocity = { 50.f, -50.f };
            polygons[index].body.mass = 4.f;
		} else if (index == 2) {
			polygons[index].body.position = { context.width * (3.f / 4.f), context.height * (3.f / 4.f) };
            polygons[index].body.velocity = { -100.f, -50.f };
            polygons[index].body.mass = 6.f;
		} else if (index == 3) {
			polygons[index].body.position = { context.width * (3.f / 4.f), context.height / 4.f };
            polygons[index].body.velocity = { -150.f, 50.f };
            polygons[index].body.mass = 8.f;
		}

        polygons[index].radius = (polygons[index].body.mass / 2.f) * 20.f;

		polygons[index].numVertices = (index + 1) * 3;
		polygons[index].color = Vector4 {
			index == 0 || index == 3 ? 255.f : 0.f,
			index == 1 || index == 3 ? 255.f : 0.f,
			index == 2 ? 255.f : 0.f,
			255.f
		};
		polygons[index].load(&renderer);
	}

    printf("Main loop beginning\n");
    mainLoop.run(update);
}

struct SATResult {
    Edge* minOverlapEdge = NULL;        // Edge that caused the intersection
    Vector2 overlapPoint;               // Point that caused the intersection on the other shape (i.e. not minOverlapShape)
    float32 minOverlap = FLT_MAX;       // Smallest projection overlap
};

struct ProjectionResult {
    Vector2 minVertex;
    Vector2 minAdjacent1;
    Vector2 minAdjacent2;

    Vector2 maxVertex;
    Vector2 maxAdjacent1;
    Vector2 maxAdjacent2;
    Vector2 projection;
};

ProjectionResult getProjection(Vector2* vertices, int numVertices, Vector2 axis) {
    ProjectionResult pr;
    pr.minVertex = vertices[0];
    pr.maxVertex = vertices[0];
	float32 min = axis.dot(vertices[0]);
	float32 max = min;

	for (int v = 1; v < numVertices; v++) {
		float32 d = axis.dot(vertices[v]);

		if (d < min) {
            pr.minVertex = vertices[v];
			min = d;
		} else if (d > max) {
            pr.maxVertex = vertices[v];
			max = d;
		}
	}
    
    pr.projection = Vector2 { min, max };
	return pr;
}

bool projectionsOverlap(Vector2 first, Vector2 second) {
	return first.x <= second.y && second.x <= first.y;
}

float32 getProjectionOverlap(Vector2 first, Vector2 second) {
	float32 e = MIN(first.y, second.y);
    float32 f = MAX(first.x, second.x);
	return e - f;
}

bool runSatForShapesEdges(SATResult* result, ConvexPolygon* first, ConvexPolygon* second) {
    for (int i = 0; i < first->numVertices; i++) {
		Vector2 normal = first->edges[i].normal;

	    ProjectionResult firstProj = getProjection(first->transformedVertices, first->numVertices, normal);
	    ProjectionResult secondProj = getProjection(second->transformedVertices, second->numVertices, normal);

		if (!projectionsOverlap(firstProj.projection, secondProj.projection)) {
			return false;
		}

		float32 overlap = getProjectionOverlap(firstProj.projection, secondProj.projection);
		if (overlap < result->minOverlap) {
			result->minOverlap = overlap;
			result->minOverlapEdge = &first->edges[i];
            
            // The overlapPoint will be the point on the other shape that penetrated the edge.
            // If we caught the intersection reasonably early, it should be the point on 'second'
            // that is nearest to the points on 'first'.
            float32 min1min2 = (firstProj.minVertex - secondProj.minVertex).length();
            float32 min1max2 = (firstProj.minVertex - secondProj.maxVertex).length();
            float32 max1max2 = (firstProj.maxVertex - secondProj.maxVertex).length();
            float32 max1min2 = (firstProj.maxVertex - secondProj.minVertex).length();
            
            float32 closest = MIN(min1min2, MIN(min1max2, MIN(max1max2, max1min2)));
            if (closest == min1min2 || closest == max1min2) {
                result->overlapPoint = secondProj.minVertex;
            } else {
                result->overlapPoint = secondProj.maxVertex;
            }

            // Check if the normal from one of the edges of the overlap point is nearly perpendicular
            // to the edge that you have intersected with. If so, let's call the point of intersection
            // the middle of the edge.
		}
	}

    return true;
}

const float32 EPSILON = 1.f;
IntersectionResult getIntersection(ConvexPolygon* first, ConvexPolygon* second) {
	IntersectionResult ir;
    SATResult sat;
    
    if (!runSatForShapesEdges(&sat, first, second)) {
        return ir;
    }

    if (!runSatForShapesEdges(&sat, second, first)) {
        return ir;
    }

	ir.intersect = true;
	ir.relativeVelocity = first->body.velocity - second->body.velocity;
	ir.collisionNormal = sat.minOverlapEdge->normal;
    ir.firstPointOfApplication = sat.overlapPoint - first->body.position;
    ir.secondPointOfApplication = sat.overlapPoint - second->body.position;;

	return ir;
}

void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir) {
    Vector2 relativeVelocity = ir->relativeVelocity;
    Vector2 collisionNormal  = ir->collisionNormal;
    Vector2 firstPerp        = ir->firstPointOfApplication.getPerp();
    Vector2 secondPerp       = ir->secondPointOfApplication.getPerp();
	float32 firstPerpNorm    = firstPerp.dot(collisionNormal);
	float32 sndPerpNorm      = secondPerp.dot(collisionNormal);

    float32 cofOfRestition = (first->cofOfRestition + second->cofOfRestition) / 2.f;
    float32 numerator = (relativeVelocity * (-1 * (1.f + cofOfRestition))).dot(collisionNormal);
    float32 linearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
	float32 rotationalDenomPart = (firstPerpNorm * firstPerpNorm) / first->momentOfInertia + (sndPerpNorm * sndPerpNorm) / second->momentOfInertia;

    float32 impulseMagnitude = numerator / (linearDenomPart + rotationalDenomPart);
    first->velocity = first->velocity + (collisionNormal * (impulseMagnitude / first->mass));
	second->velocity = second->velocity - (collisionNormal * (impulseMagnitude / second->mass));

    first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * impulseMagnitude) / first->momentOfInertia;
    second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * impulseMagnitude) / second->momentOfInertia;
}

bool circleHitBoxesIntersect(ConvexPolygon* first, ConvexPolygon* second) {
    return (first->body.position - second->body.position).length() <= (first->radius + second->radius);
}

void update(float32 deltaTimeSeconds, void* userData) {
	// Update
	for (int p = 0; p < 4; p++) {
	    polygons[p].update(deltaTimeSeconds);
	}

	// Collision detection
	for (int i = 0; i < 4; i++) {
	    ConvexPolygon* first = &polygons[i];
		for (int j = i + 1; j < 4; j++) {
		    ConvexPolygon* second = &polygons[j];

            if (!circleHitBoxesIntersect(first, second)) {
                continue;
            }

            first->calculateTransformedVertices();
            second->calculateTransformedVertices();
			
			IntersectionResult ir = getIntersection(first, second);
			if (!ir.intersect) {
				continue;
			}

			// Handle collison here
			IntersectionResult irCopy = ir;
			float32 copyDt = deltaTimeSeconds;
            float32 subdivisionDt = copyDt / 16.f;
		
			do {
				first->restorePreviousBody();
				second->restorePreviousBody();
				
				ir = irCopy;
				copyDt = copyDt - subdivisionDt;

			    first->update(copyDt);
				second->update(copyDt);

				first->calculateTransformedVertices();
				second->calculateTransformedVertices();			
				
				irCopy = getIntersection(first, second);

				if (copyDt <= 0.f) {
					printf("Error: Should not be happening.\n");
					break;
				}

			} while (irCopy.intersect);

			printf("Found intersection at timestamp: %f\n", copyDt);

			resolveCollision(&first->body, &second->body, &ir);

			// OK - now we need to avoid the case where we just caused
			// another collision immediately. We will replay this entire
			// frame.
			for (int o = 0; o < 4; o++) {
				if (o != i && o != j) {
					auto other = &polygons[o];
					other->restorePreviousBody();
					other->update(copyDt);
				}
			}
			
			float32 frameTimeRemaining = deltaTimeSeconds - copyDt;
			update(frameTimeRemaining, NULL);
		    break;
		}
    }

    // Check collisions with walls
    for (int p = 0; p < 4; p++) {
        ConvexPolygon* polygon = &polygons[p];
        if (polygon->body.position.x <= 0.f) {
            polygon->body.position.x = 0.f;
            polygon->body.velocity = polygon->body.velocity - Vector2 { 1.f, 0.f } * (2 * (polygon->body.velocity.dot(Vector2 { 1.f, 0.f })));
        }
        if (polygon->body.position.y <= 0.f) {
            polygon->body.position.y = 0.f;
            polygon->body.velocity = polygon->body.velocity - Vector2 { 0.f, 1.f } * (2 * (polygon->body.velocity.dot(Vector2 { 0.f, 1.f })));
        } 
        if (polygon->body.position.x >= 800.f) {
            polygon->body.position.x = 800.f;
            polygon->body.velocity = polygon->body.velocity - Vector2 { -1.f, 0.f } * (2 * (polygon->body.velocity.dot(Vector2{ -1.f, 0.f })));
        }
        if (polygon->body.position.y >= 600.f) {
            polygon->body.position.y = 600.f;
            polygon->body.velocity = polygon->body.velocity - Vector2 { 0.f, -1.f } * (2 * (polygon->body.velocity.dot(Vector2 { 0.f, -1.f }))) ;
        }
    }
	
	// Renderer
	renderer.render();
	for (int p = 0; p < 4; p++) {
	    polygons[p].render(&renderer);
	}
}

void unload() {
    mainLoop.stop();
    renderer.unload();
	for (int p = 0; p < 4; p++) {
	    polygons[p].unload();
	}
}

//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Play clicked\n");
    
    load();
    return true;
}

EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Stop clicked\n");
    unload();
    return true;
}

EM_BOOL onGravityReversed(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Reversing gravity\n");
    gravityDirection = -gravityDirection;
    return true;
}