1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#include "../../../shared_cpp/Renderer2d.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/WebglContext.h"
#include "../../../shared_cpp/mathlib.h"
#include "../../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>
#include <cfloat>
struct Impulse {
Vector2 force = { 0, 0 };
Vector2 pointOfApplication = { 0, 0 };
float32 timeOfApplicationSeconds = 0.25f;
float32 timeAppliedSeconds = 0.f;
bool isDead = false;
};
const int32 NUM_IMPULSES = 4;
struct Rigidbody {
int32 numImpulses = 0;
Impulse activeImpulses[NUM_IMPULSES];
Vector2 velocity = { 0, 0 };
Vector2 position = { 0, 0 };
float32 mass = 1.f;
float32 rotationalVelocity = 0.f;
float32 rotation = 0.f;
float32 momentOfInertia = 1.f;
float32 cofOfRestitution = 1.f;
void reset() {
numImpulses = 0;
velocity = { 0, 0 };
rotationalVelocity = 0.f;
rotation = 0.f;
}
void applyImpulse(Impulse i) {
if (numImpulses > NUM_IMPULSES) {
printf("Unable to apply impulse. Buffer full.\n");
return;
}
activeImpulses[numImpulses] = i;
numImpulses++;
}
void applyGravity(float32 deltaTimeSeconds) {
velocity += (Vector2 { 0.f, -9.8f } * deltaTimeSeconds);
}
void update(float32 deltaTimeSeconds) {
applyGravity(deltaTimeSeconds);
Vector2 force;
float32 torque = 0.f;
for (int32 idx = 0; idx < numImpulses; idx++) {
Impulse& i = activeImpulses[idx];
float32 nextTimeAppliedSeconds = i.timeAppliedSeconds + deltaTimeSeconds;
if (nextTimeAppliedSeconds >= i.timeOfApplicationSeconds) {
nextTimeAppliedSeconds = i.timeOfApplicationSeconds; // Do the remainder of the time
i.isDead = true;
}
float32 impulseDtSeconds = nextTimeAppliedSeconds - i.timeAppliedSeconds;
Vector2 forceToApply = i.force * (impulseDtSeconds / i.timeOfApplicationSeconds);
force += forceToApply;
torque += i.pointOfApplication.getPerp().dot(forceToApply);
i.timeAppliedSeconds = nextTimeAppliedSeconds;
}
Vector2 acceleration = force / mass;
velocity += (acceleration * deltaTimeSeconds);
position += (velocity * deltaTimeSeconds);
float32 rotationalAcceleration = torque / momentOfInertia;
rotationalVelocity += (rotationalAcceleration * deltaTimeSeconds);
rotation += (rotationalVelocity * deltaTimeSeconds);
for (int32 idx = 0; idx < numImpulses; idx++) {
if (activeImpulses[idx].isDead) {
for (int j = idx + 1; j < numImpulses; j++) {
activeImpulses[j - 1] = activeImpulses[j];
}
idx = idx - 1;
numImpulses--;
}
}
}
};
struct Circle {
Mesh2d shape;
Rigidbody body;
Rigidbody previousBody;
Vector2 force;
float32 radius;
void load(Renderer2d* renderer, float32 inRadius, Vector4 startColor, Vector4 endColor) {
radius = inRadius;
const int32 numSegments = 36;
const float32 radiansPerSegment = (2.f * PI) / static_cast<float>(numSegments);
const int32 numVertices = numSegments * 3;
startColor = startColor.toNormalizedColor();
endColor = endColor.toNormalizedColor();
Vertex2d vertices[numSegments * 3];
for (int idx = 0; idx < numSegments; idx++) {
int vIdx = idx * 3;
Vector4 color;
if (idx >= numSegments / 2) {
color = endColor;
} else {
color = startColor;
}
vertices[vIdx].color = color;
vertices[vIdx].position = Vector2 { radius * cosf(radiansPerSegment * idx), radius * sinf(radiansPerSegment * idx) };
vertices[vIdx + 1].color = color;
vertices[vIdx + 1].position = Vector2 { 0.f, 0.f };
vertices[vIdx + 2].color = color;
vertices[vIdx + 2].position = Vector2 { radius * cosf(radiansPerSegment * (idx + 1)), radius * sinf(radiansPerSegment * (idx + 1)) };
}
shape.load(vertices, numVertices, renderer);
body.reset();
body.momentOfInertia = (PI * (radius * radius)) / 4.f;
}
void update(float32 dtSeconds) {
previousBody = body;
shape.model = Mat4x4().translateByVec2(body.position).rotate2D(body.rotation);
body.update(dtSeconds);
}
void render(Renderer2d* renderer) {
shape.render(renderer);
}
void unload() {
shape.unload();
}
void restorePreviousBody() {
body = previousBody;
}
};
struct IntersectionResult {
bool intersect = false;
Vector2 collisionNormal;
Vector2 relativeVelocity;
Vector2 firstPointOfApplication;
Vector2 secondPointOfApplication;
};
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
void load();
void update(float32 time, void* userData);
void unload();
WebglContext context;
Renderer2d renderer;
MainLoop mainLoop;
Circle c1;
Circle c2;
int main() {
context.init("#gl_canvas");
emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
return 0;
}
void load() {
renderer.load(&context);
c1.load(&renderer, 32.f, Vector4 { 55.f, 235.f, 35.f, 255.f }, Vector4 { 235.f, 5.f, 235.f, 255.f });
c1.body.mass = 3.f;
c1.body.position = Vector2 { context.width / 4.f, context.height / 4.f };
c1.body.velocity = Vector2 { 100.f, 250.f };
c2.load(&renderer, 64.f, Vector4 { 235.f, 5.f, 35.f, 255.f }, Vector4 { 5.f, 35.f, 235.f, 255.f });
c2.body.mass = 1.f;
c2.body.position = Vector2 { context.width * (3.f / 4.f), context.height * (3.f / 4.f) };
c2.body.velocity = Vector2 { -300.f, -150.f };
mainLoop.run(update);
}
void handleCollisionWithWall(Circle* c) {
if (c->body.position.x <= 0.f) {
c->body.position.x = 0.f;
c->body.velocity = c->body.velocity - Vector2 { 1.f, 0.f } * (2 * (c->body.velocity.dot(Vector2 { 1.f, 0.f })));
}
if (c->body.position.y <= 0.f) {
c->body.position.y = 0.f;
c->body.velocity = c->body.velocity - Vector2 { 0.f, 1.f } * (2 * (c->body.velocity.dot(Vector2 { 0.f, 1.f })));
}
if (c->body.position.x >= 800.f) {
c->body.position.x = 800.f;
c->body.velocity = c->body.velocity - Vector2 { -1.f, 0.f } * (2 * (c->body.velocity.dot(Vector2{ -1.f, 0.f })));
}
if (c->body.position.y >= 600.f) {
c->body.position.y = 600.f;
c->body.velocity = c->body.velocity - Vector2 { 0.f, -1.f } * (2 * (c->body.velocity.dot(Vector2 { 0.f, -1.f }))) ;
}
}
IntersectionResult getIntersection(Circle* first, Circle* second) {
IntersectionResult ir;
Vector2 positionDiff = (first->body.position - second->body.position);
if (positionDiff.length() > first->radius + second->radius) {
return ir; // Not intersecting
}
Vector2 positionDirection = positionDiff.normalize();
ir.relativeVelocity = first->body.velocity - second->body.velocity;
// The positionDirection could represent the normal at which our circles intersect, but then we would
// never get any rotation on them. At the same time, this is not an entirely great selection because, in the real
// world, two circles wouldn't hit one another at exactly the normal. To fix this, we offset the positionDirection
// by the relative velocity. This gives a normal that is slightly more believable, and allows our spin to take place.
ir.collisionNormal = (positionDirection + ir.relativeVelocity.negate().normalize()).normalize();
ir.firstPointOfApplication = positionDirection * first->radius;
ir.secondPointOfApplication = positionDirection * second->radius;
ir.intersect = true;
return ir;
}
void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir) {
Vector2 relativeVelocity = ir->relativeVelocity;
Vector2 collisionNormal = ir->collisionNormal;
Vector2 firstPerp = ir->firstPointOfApplication.getPerp();
Vector2 secondPerp = ir->secondPointOfApplication.getPerp();
float32 firstPerpNorm = firstPerp.dot(collisionNormal);
float32 sndPerpNorm = secondPerp.dot(collisionNormal);
float32 cofOfRestitution = (first->cofOfRestitution + second->cofOfRestitution) / 2.f;
float32 numerator = (relativeVelocity * (-1 * (1.f + cofOfRestitution))).dot(collisionNormal);
float32 linearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
float32 rotationalDenomPart = (firstPerpNorm * firstPerpNorm) / first->momentOfInertia + (sndPerpNorm * sndPerpNorm) / second->momentOfInertia;
float32 impulseMagnitude = numerator / (linearDenomPart + rotationalDenomPart);
first->velocity = first->velocity + (collisionNormal * (impulseMagnitude / first->mass));
second->velocity = second->velocity - (collisionNormal * (impulseMagnitude / second->mass));
first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * impulseMagnitude) / first->momentOfInertia;
second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * impulseMagnitude) / second->momentOfInertia;
}
void update(float32 deltaTimeSeconds, void* userData) {
c1.update(deltaTimeSeconds);
c2.update(deltaTimeSeconds);
// Let's backtrack the simulation to find the precise point at which we collided.
// There exists many ways to find this precise point. This is by far the most
// expensive, but it gets the job done.
IntersectionResult ir = getIntersection(&c1, &c2);
if (ir.intersect) {
IntersectionResult irCopy = ir;
float32 copyDt = deltaTimeSeconds;
float32 subdivisionAmountSeconds = deltaTimeSeconds / 16.f;
do {
c1.restorePreviousBody();
c2.restorePreviousBody();
ir = irCopy;
copyDt = copyDt - subdivisionAmountSeconds;
c1.update(copyDt);
c2.update(copyDt);
irCopy = getIntersection(&c1, &c2);
if (copyDt <= 0.f) {
printf("Error: Should not be happening.\n");
break;
}
} while (irCopy.intersect);
printf("Found intersection at timestamp: %f\n", copyDt);
// The following function is the main one that we're talking about in this tutorial.
// This function will take the collision data, and repel the objects away from one
// another using what we know from physics.
resolveCollision(&c1.body, &c2.body, &ir);
float32 frameTimeRemaining = deltaTimeSeconds - copyDt;
c1.update(frameTimeRemaining);
c2.update(frameTimeRemaining);
}
// Keep within the bounds
handleCollisionWithWall(&c1);
handleCollisionWithWall(&c2);
// Renderer
renderer.render();
c1.render(&renderer);
c2.render(&renderer);
}
void unload() {
mainLoop.stop();
renderer.unload();
c1.unload();
c2.unload();
}
//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Play clicked\n");
load();
return true;
}
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Stop clicked\n");
unload();
return true;
}
|