1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
#include "../../../shared_cpp/OrthographicRenderer.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/WebglContext.h"
#include "../../../shared_cpp/mathlib.h"
#include "../../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>
#include <cfloat>
struct Rigidbody {
Vector2 linearForce = { 0, 0 };
Vector2 velocity = { 0, 0 };
Vector2 position = { 0, 0 };
float32 mass = 1.f;
float32 torque = 0.f;
float32 rotationalVelocity = 0.f;
float32 rotation = 0.f;
float32 momentOfInertia = 1.f;
float32 cofOfRestitution = 1.f;
void reset() {
linearForce = { 0, 0 };
velocity = { 0, 0 };
rotationalVelocity = 0.f;
rotation = 0.f;
}
void applyForce(Vector2 force, Vector2 pointOfApplication) {
linearForce += force;
torque += pointOfApplication.getPerp().dot(force);
}
void applyGravity() {
applyForce(Vector2 { 0.f, -100.f }, Vector2 { 0.f, 0.f });
}
void update(float32 deltaTimeSeconds) {
applyGravity();
Vector2 acceleration = linearForce / mass;
velocity += (acceleration * deltaTimeSeconds);
position += (velocity * deltaTimeSeconds);
linearForce = Vector2 { 0.f, 0.f };
// New: Update the rotational velocity as well
float32 rotationalAcceleration = torque / momentOfInertia;
rotationalVelocity += (rotationalAcceleration * deltaTimeSeconds);
rotation += (rotationalVelocity * deltaTimeSeconds);
torque = 0.f;
}
};
struct Edge {
Vector2 normal;
Vector2 start;
Vector2 end;
};
struct Rectangle {
OrthographicShape shape;
Rigidbody body;
Rigidbody previousBody;
Vector2 originalPoints[4];
Vector2 transformedPoints[4];
Edge edges[4];
void load(OrthographicRenderer* renderer, Vector4 color, float32 width, float32 height) {
color = color.toNormalizedColor();
float32 halfWidth = width / 2.f;
float32 halfHeight = height / 2.f;
OrthographicVertex vertices[6];
vertices[0].position = Vector2 { -halfWidth, -halfHeight };
vertices[1].position = Vector2 { -halfWidth, halfHeight };
vertices[2].position = Vector2 { halfWidth, halfHeight };
vertices[3].position = Vector2 { -halfWidth, -halfHeight };
vertices[4].position = Vector2 { halfWidth, -halfHeight };
vertices[5].position = Vector2 { halfWidth, halfHeight };
for (int32 i = 0; i < 6; i++) {
vertices[i].color = color;
}
originalPoints[0] = vertices[0].position;
originalPoints[1] = vertices[1].position;
originalPoints[2] = vertices[2].position;
originalPoints[3] = vertices[4].position;
shape.load(vertices, 6, renderer);
body.reset();
body.momentOfInertia = (width * width + height * height) * (body.mass / 12.f);
}
void update(float32 dtSeconds) {
previousBody = body;
body.update(dtSeconds);
shape.model = Mat4x4().translateByVec2(body.position).rotate2D(body.rotation);
// Note: This helps us check rectangle collisions using SAT later on.
// This is probably a slightly slow way of doing this, but we will ignore
// that for now.
for (int idx = 0; idx < 4; idx++) {
transformedPoints[idx] = shape.model * originalPoints[idx];
}
for (int eidx = 0; eidx < 4; eidx++) {
edges[eidx].start = transformedPoints[eidx];
edges[eidx].end = transformedPoints[eidx == 3 ? 0 : eidx + 1];
edges[eidx].normal = (edges[eidx].end - edges[eidx].start).getPerp().normalize();
}
}
void restorePreviousBody() {
body = previousBody;
}
void render(OrthographicRenderer* renderer) {
shape.render(renderer);
}
void unload() {
shape.unload();
}
};
struct IntersectionResult {
bool intersect = false;
Vector2 collisionNormal;
Vector2 relativeVelocity;
Vector2 firstPointOfApplication;
Vector2 secondPointOfApplication;
};
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
void load();
void update(float32 time, void* userData);
void unload();
WebglContext context;
OrthographicRenderer renderer;
MainLoop mainLoop;
Rectangle r1;
Rectangle r2;
int main() {
context.init("#gl_canvas");
emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
return 0;
}
void load() {
renderer.load(&context);
r1.load(&renderer, Vector4 { 55.f, 235.f, 35.f, 255.f }, 128.f, 64.f);
r1.body.mass = 3.f;
r1.body.position = Vector2 { context.width / 4.f, context.height / 4.f };
r1.body.velocity = Vector2 { 100.f, 250.f };
r2.load(&renderer, Vector4 { 235.f, 5.f, 35.f, 255.f }, 96.f, 64.f);
r2.body.mass = 1.f;
r2.body.position = Vector2 { context.width * (3.f / 4.f), context.height * (3.f / 4.f) };
r2.body.velocity = Vector2 { -300.f, -150.f };
r2.body.rotationalVelocity = 0.9f;
mainLoop.run(update);
}
void handleCollisionWithWall(Rectangle* r) {
if (r->body.position.x <= 0.f) {
r->body.position.x = 0.f;
r->body.velocity = r->body.velocity - Vector2 { 1.f, 0.f } * (2 * (r->body.velocity.dot(Vector2 { 1.f, 0.f })));
}
if (r->body.position.y <= 0.f) {
r->body.position.y = 0.f;
r->body.velocity = r->body.velocity - Vector2 { 0.f, 1.f } * (2 * (r->body.velocity.dot(Vector2 { 0.f, 1.f })));
}
if (r->body.position.x >= 800.f) {
r->body.position.x = 800.f;
r->body.velocity = r->body.velocity - Vector2 { -1.f, 0.f } * (2 * (r->body.velocity.dot(Vector2{ -1.f, 0.f })));
}
if (r->body.position.y >= 600.f) {
r->body.position.y = 600.f;
r->body.velocity = r->body.velocity - Vector2 { 0.f, -1.f } * (2 * (r->body.velocity.dot(Vector2 { 0.f, -1.f }))) ;
}
}
/*
Do not worry about how w are exactly finding the intersection here, for now.
We are using the Separating Axis Theorem to do so here. In the 2D -> Collisions
section of the website, we describe this method at length.
*/
Vector2 getProjection(Vector2* vertices, Vector2 axis) {
float32 min = axis.dot(vertices[0]);
float32 max = min;
for (int v = 1; v < 4; v++) {
float32 d = axis.dot(vertices[v]);
if (d < min) {
min = d;
} else if (d > max) {
max = d;
}
}
return Vector2 { min, max };
}
inline bool projectionsOverlap(Vector2 first, Vector2 second) {
return first.x <= second.y && second.x <= first.y;
}
inline float32 getProjectionOverlap(Vector2 first, Vector2 second) {
float32 firstOverlap = (first.x - second.y); // TODO: Does this need to be absolute value?
float32 secondOverlap = (second.x - first.y);
return firstOverlap > secondOverlap ? secondOverlap : firstOverlap;
}
struct IntermediateIntersectionResult {
float32 minOverlap = FLT_MAX;
Edge* minOverlapEdge;
bool isOverlapOnFirstEdge = true;
};
bool checkEdgeOverlap(Edge* edges, Rectangle* first, Rectangle* second, IntermediateIntersectionResult* iir, bool isFirstEdge) {
// Returns true if SAT passes for the provided set of edges.
for (int i = 0; i < 4; i++) {
Vector2 normal = edges[i].normal;
Vector2 firstProj = getProjection(first->transformedPoints, normal);
Vector2 secondProj = getProjection(second->transformedPoints, normal);
if (!projectionsOverlap(firstProj, secondProj)) {
return false;
}
float32 overlap = getProjectionOverlap(firstProj, secondProj);
if (overlap < iir->minOverlap) {
iir->minOverlap = overlap;
iir->minOverlapEdge = &edges[i];
iir->isOverlapOnFirstEdge = isFirstEdge;
}
}
return true;
}
const float32 EPSILON = 1.f;
IntersectionResult getIntersection(Rectangle* first, Rectangle* second) {
IntersectionResult ir;
IntermediateIntersectionResult iir;
if (!checkEdgeOverlap(first->edges, first, second, &iir, true)) {
return ir;
}
if (!checkEdgeOverlap(second->edges, first, second, &iir, false)) {
return ir;
}
ir.intersect = true;
ir.relativeVelocity = first->body.velocity - second->body.velocity;
ir.collisionNormal = iir.minOverlapEdge->normal;
float32 minDistanceFromEdge = FLT_MAX;
Vector2 pointOfContact;
Vector2* pointsToCheck = iir.isOverlapOnFirstEdge ? second->transformedPoints : first->transformedPoints;
for (int p = 0; p < 4; p++) {
Vector2 point = pointsToCheck[p];
float32 distanceFromEdge = MIN((iir.minOverlapEdge->start - point).length(), (iir.minOverlapEdge->end - point).length());
if (distanceFromEdge < minDistanceFromEdge) {
minDistanceFromEdge = distanceFromEdge;
pointOfContact = point;
}
}
ir.firstPointOfApplication = pointOfContact - first->body.position;
ir.secondPointOfApplication = pointOfContact - second->body.position;;
return ir;
}
/**
In this method, we resolve the collision of two rigidbodies using the IntersectionResult
that we gathered from the collision information. Note that this particular tutorial
is not about how we find this collision, but rather how we use this collision. To see the
variety of ways of how this IntersectionResult can be calculated go to the 2D->Collision
section of the website.
***/
void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir) {
Vector2 relativeVelocity = ir->relativeVelocity;
Vector2 collisionNormal = ir->collisionNormal;
Vector2 firstPerp = ir->firstPointOfApplication.getPerp();
Vector2 secondPerp = ir->secondPointOfApplication.getPerp();
float32 firstPerpNorm = firstPerp.dot(collisionNormal);
float32 sndPerpNorm = secondPerp.dot(collisionNormal);
float32 cofOfRestitution = (first->cofOfRestitution + second->cofOfRestitution) / 2.f;
float32 numerator = (relativeVelocity * (-1 * (1.f + cofOfRestitution))).dot(collisionNormal);
float32 linearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
float32 rotationalDenomPart = (firstPerpNorm * firstPerpNorm) / first->momentOfInertia + (sndPerpNorm * sndPerpNorm) / second->momentOfInertia;
float32 impulseMagnitude = numerator / (linearDenomPart + rotationalDenomPart);
first->velocity = first->velocity + (collisionNormal * (impulseMagnitude / first->mass));
second->velocity = second->velocity - (collisionNormal * (impulseMagnitude / second->mass));
first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * impulseMagnitude) / first->momentOfInertia;
second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * impulseMagnitude) / second->momentOfInertia;
}
void update(float32 deltaTimeSeconds, void* userData) {
r1.update(deltaTimeSeconds);
r2.update(deltaTimeSeconds);
// Let's backtrack the simulation to find the precise point at which we collided.
// There exists many ways to find this precise point. This is by far the most
// expensive, but it gets the job done.
IntersectionResult ir = getIntersection(&r1, &r2);
if (ir.intersect) {
IntersectionResult irCopy = ir;
float32 copyDt = deltaTimeSeconds;
float32 subdivisionAmountSeconds = deltaTimeSeconds / 16.f;
do {
r1.restorePreviousBody();
r2.restorePreviousBody();
ir = irCopy;
copyDt = copyDt - subdivisionAmountSeconds;
r1.update(copyDt);
r2.update(copyDt);
irCopy = getIntersection(&r1, &r2);
if (copyDt <= 0.f) {
printf("Error: Should not be happening.\n");
break;
}
} while (irCopy.intersect);
printf("Found intersection at timestamp: %f\n", copyDt);
// The following function is the main one that we're talking about in this tutorial.
// This function will take the collision data, and repel the objects away from one
// another using what we know from physics.
resolveCollision(&r1.body, &r2.body, &ir);
float32 frameTimeRemaining = deltaTimeSeconds - copyDt;
r1.update(frameTimeRemaining);
r2.update(frameTimeRemaining);
}
// Keep within the bounds
handleCollisionWithWall(&r1);
handleCollisionWithWall(&r2);
// Renderer
renderer.render();
r1.render(&renderer);
r2.render(&renderer);
}
void unload() {
mainLoop.stop();
renderer.unload();
r1.unload();
r2.unload();
}
//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Play clicked\n");
load();
return true;
}
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Stop clicked\n");
unload();
return true;
}
|