summaryrefslogtreecommitdiff
path: root/2d/rigidbody/rigidbody_3/main.cpp
blob: 2063718a00612859c0c1cd45c5073649bf7b2b71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include "../../../shared_cpp/OrthographicRenderer.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/WebglContext.h"
#include "../../../shared_cpp/mathlib.h"
#include "../../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>
#include <cfloat>

struct Rigidbody {
	Vector2 linearForce = { 0, 0 };
    Vector2 velocity = { 0, 0 };
    Vector2 position = { 0, 0 };
    float32 mass = 1.f;

	float32 torque = 0.f;
	float32 rotationalVelocity = 0.f;
	float32 rotation = 0.f;
	float32 momentOfInertia = 1.f;
	float32 cofOfRestitution = 1.f;

    void reset() {
        linearForce = { 0, 0 };
        velocity = { 0, 0 };
		rotationalVelocity = 0.f;
		rotation = 0.f;
    }

    void applyForce(Vector2 force, Vector2 pointOfApplication) {
        linearForce += force;
	    torque += pointOfApplication.getPerp().dot(force);
    }

    void applyGravity() {
		applyForce(Vector2 { 0.f, -100.f }, Vector2 { 0.f, 0.f });
    }

    void update(float32 deltaTimeSeconds) {
        applyGravity();
        
        Vector2 acceleration = linearForce / mass;
        velocity += (acceleration * deltaTimeSeconds);
        position += (velocity * deltaTimeSeconds);
        linearForce = Vector2 { 0.f, 0.f };

		// New: Update the rotational velocity as well
		float32 rotationalAcceleration = torque / momentOfInertia;
		rotationalVelocity += (rotationalAcceleration * deltaTimeSeconds);
		rotation += (rotationalVelocity * deltaTimeSeconds);
		torque = 0.f;
    }
};

struct Edge {
	Vector2 normal;
	Vector2 start;
	Vector2 end;
};

struct Rectangle {
	OrthographicShape shape;
    Rigidbody body;
	Rigidbody previousBody;
	Vector2 originalPoints[4];
	Vector2 transformedPoints[4];
	Edge edges[4];

	void load(OrthographicRenderer* renderer, Vector4 color, float32 width, float32 height) {
        color = color.toNormalizedColor();

		float32 halfWidth = width / 2.f;
		float32 halfHeight = height / 2.f;

	    OrthographicVertex vertices[6];
		vertices[0].position = Vector2 { -halfWidth, -halfHeight };
		vertices[1].position = Vector2 { -halfWidth, halfHeight };
		vertices[2].position = Vector2 { halfWidth, halfHeight };
		vertices[3].position = Vector2 { -halfWidth, -halfHeight };
		vertices[4].position = Vector2 { halfWidth, -halfHeight };
		vertices[5].position = Vector2 { halfWidth, halfHeight };
		
		for (int32 i = 0; i < 6; i++) {
			vertices[i].color = color;
		}

		originalPoints[0] = vertices[0].position;
		originalPoints[1] = vertices[1].position;
		originalPoints[2] = vertices[2].position;
		originalPoints[3] = vertices[4].position;
		
		shape.load(vertices, 6, renderer);
		body.reset();

		body.momentOfInertia = (width * width + height * height) * (body.mass / 12.f);
	}

	void update(float32 dtSeconds) {
		previousBody = body;
		body.update(dtSeconds);
		shape.model = Mat4x4().translateByVec2(body.position).rotate2D(body.rotation);

		// Note: This helps us check rectangle collisions using SAT later on.
		// This is probably a slightly slow way of doing this, but we will ignore
		// that for now.
		for (int idx = 0; idx < 4; idx++) {
			transformedPoints[idx] = shape.model * originalPoints[idx];
		}

		for (int eidx = 0; eidx < 4; eidx++) {
			edges[eidx].start = transformedPoints[eidx];
			edges[eidx].end = transformedPoints[eidx == 3 ? 0 : eidx + 1];
			edges[eidx].normal = (edges[eidx].end - edges[eidx].start).getPerp().normalize();
		}
	}

	void restorePreviousBody() {
		body = previousBody;
	}

	void render(OrthographicRenderer* renderer) {
		shape.render(renderer);
	}

	void unload() {
		shape.unload();
	}
};

struct IntersectionResult {
    bool intersect = false;
    Vector2 collisionNormal;
    Vector2 relativeVelocity;
    Vector2 firstPointOfApplication;
    Vector2 secondPointOfApplication;
};

EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);

void load();
void update(float32 time, void* userData);
void unload();

WebglContext context;
OrthographicRenderer renderer;
MainLoop mainLoop;
Rectangle r1;
Rectangle r2;

int main() {
	context.init("#gl_canvas");
    emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
    emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
    return 0;
}

void load() {
    renderer.load(&context);

    r1.load(&renderer, Vector4 { 55.f, 235.f, 35.f, 255.f }, 128.f, 64.f);
	r1.body.mass = 3.f;
    r1.body.position = Vector2 { context.width / 4.f, context.height / 4.f };
	r1.body.velocity = Vector2 { 100.f, 250.f };

	r2.load(&renderer, Vector4 { 235.f, 5.f, 35.f, 255.f }, 96.f, 64.f);
	r2.body.mass = 1.f;
    r2.body.position = Vector2 { context.width * (3.f / 4.f), context.height * (3.f / 4.f) };
	r2.body.velocity = Vector2 { -300.f, -150.f };

    mainLoop.run(update);
}

void handleCollisionWithWall(Rectangle* r) {
	if (r->body.position.x <= 0.f) {
        r->body.position.x = 0.f;
        r->body.velocity = r->body.velocity - Vector2 { 1.f, 0.f } * (2 * (r->body.velocity.dot(Vector2 { 1.f, 0.f })));
    }
    if (r->body.position.y <= 0.f) {
        r->body.position.y = 0.f;
        r->body.velocity = r->body.velocity - Vector2 { 0.f, 1.f } * (2 * (r->body.velocity.dot(Vector2 { 0.f, 1.f })));
    } 
    if (r->body.position.x >= 800.f) {
        r->body.position.x = 800.f;
        r->body.velocity = r->body.velocity - Vector2 { -1.f, 0.f } * (2 * (r->body.velocity.dot(Vector2{ -1.f, 0.f })));
    }
    if (r->body.position.y >= 600.f) {
        r->body.position.y = 600.f;
        r->body.velocity = r->body.velocity - Vector2 { 0.f, -1.f } * (2 * (r->body.velocity.dot(Vector2 { 0.f, -1.f }))) ;
    }
}

Vector2 getProjection(Vector2* vertices, Vector2 axis) {
	float32 min = axis.dot(vertices[0]);
	float32 max = min;

	for (int v = 1; v < 4; v++) {
		float32 d = axis.dot(vertices[v]);

		if (d < min) {
			min = d;
		} else if (d > max) {
			max = d;
		}
	}

	return Vector2 { min, max };
}

bool projectionsOverlap(Vector2 first, Vector2 second) {
	return first.x <= second.y && second.x <= first.y;
}

float32 getProjectionOverlap(Vector2 first, Vector2 second) {
	float32 firstOverlap = fabs(first.x - second.y);
	float32 secondOverlap = fabs(second.x - first.y);
	return firstOverlap > secondOverlap ? secondOverlap : firstOverlap;
}

const float32 EPSILON = 1.f;
IntersectionResult getIntersection(Rectangle* first, Rectangle* second) {
	IntersectionResult ir;

	// For two rectangles to overlap, it means that at least one of the corners of one is inside of the other
    Edge* firstEdges = first->edges;
	Vector2* firstPoints = first->transformedPoints;

    Edge* secondEdges = second->edges;
	Vector2* secondPoints = second->transformedPoints;

	float32 minOverlap = FLT_MAX;
	Vector2 minOverlapAxis;
	Edge* minOverlapEdge = NULL;
	bool minOverlapWasFirstRect = false;
    
	for (int i = 0; i < 4; i++) {
		Vector2 normal = firstEdges[i].normal;

	    Vector2 firstProj = getProjection(firstPoints, normal);
		Vector2 secondProj = getProjection(secondPoints, normal);

		if (!projectionsOverlap(firstProj, secondProj)) {
			return ir;
		}

		float32 overlap = getProjectionOverlap(firstProj, secondProj);
		if (overlap < minOverlap) {
			minOverlap = overlap;
			minOverlapAxis = normal;
			minOverlapEdge = &firstEdges[i];
			minOverlapWasFirstRect = true;
		}
	}

	for (int i = 0; i < 4; i++) {
		Vector2 normal = secondEdges[i].normal;

	    Vector2 firstProj = getProjection(firstPoints, normal);
		Vector2 secondProj = getProjection(secondPoints, normal);

		if (!projectionsOverlap(firstProj, secondProj)) {
			return ir;
		}

		float32 overlap = getProjectionOverlap(firstProj, secondProj);
		if (overlap < minOverlap) {
			minOverlap = overlap;
			minOverlapAxis = normal;
			minOverlapEdge = &secondEdges[i];
		}
	}

	ir.intersect = true;
	ir.relativeVelocity = first->body.velocity - second->body.velocity;
	ir.collisionNormal = minOverlapAxis;

    // Find the point of collision, this is kind of tricky, and it is just an approximation for now.
    // At this point, we know that we intersected along the minOverlapAxis, but we do not know where
    // that exactly happened. To remedy this will, we create two parallel lines: one at the top of the
    // normal area, and one at the bottom. For point on both of the Rectangles, we will check:
    // (1) if it is between these two planes
    // (2) if, for that rectangle, it is the closest point to the original normal vector
    // (3) or if it is equally distant from normal vector as another point (then this is a "flat" collision)
    //
    // The collision point MUST be between these two planes. We can then say the corner/face of the non-monoverlapAxis 
    // Rectangle is the collision point. This enables us to then solve for their respective points of application fairly
    // easily. If the collision "point" is an entire face, we make the collision point be the center point.
    //

	Vector2 closestPoint;
	float32 minDistance = FLT_MAX;

    for (int p = 0; p < 4; p++) {
		Vector2 point = minOverlapWasFirstRect ? secondPoints[p] : firstPoints[p];

		float32 distFromPointToStart = (minOverlapEdge->start - point).length();
		float32 distFromPointToEnd = (minOverlapEdge->end - point).length();
		float32 potentialMin = MIN(distFromPointToStart, distFromPointToEnd);

		if (potentialMin < minDistance) {
			closestPoint = point;
			minDistance = potentialMin; 
		}
    }

    ir.firstPointOfApplication = closestPoint - first->body.position;
    ir.secondPointOfApplication = closestPoint - second->body.position;;

	return ir;
}

void resolveCollision(Rigidbody* first, Rigidbody* second, IntersectionResult* ir) {
    Vector2 relativeVelocity = ir->relativeVelocity;
    Vector2 collisionNormal  = ir->collisionNormal;
    Vector2 firstPerp        = ir->firstPointOfApplication.getPerp();
    Vector2 secondPerp       = ir->secondPointOfApplication.getPerp();
	float32 firstPerpNorm    = firstPerp.dot(collisionNormal);
	float32 sndPerpNorm      = secondPerp.dot(collisionNormal);

    float32 cofOfRestitution = (first->cofOfRestitution + second->cofOfRestitution) / 2.f;
    float32 numerator = (relativeVelocity * (-1 * (1.f + cofOfRestitution))).dot(collisionNormal);
    float32 linearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
	float32 rotationalDenomPart = (firstPerpNorm * firstPerpNorm) / first->momentOfInertia + (sndPerpNorm * sndPerpNorm) / second->momentOfInertia;

    float32 impulseMagnitude = numerator / (linearDenomPart + rotationalDenomPart);
    first->velocity = first->velocity + (collisionNormal * (impulseMagnitude / first->mass));
	second->velocity = second->velocity - (collisionNormal * (impulseMagnitude / second->mass));

    first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * impulseMagnitude) / first->momentOfInertia;
    second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * impulseMagnitude) / second->momentOfInertia;
}

void update(float32 deltaTimeSeconds, void* userData) {
    r1.update(deltaTimeSeconds);
	r2.update(deltaTimeSeconds);

	// Handle intersection between the two rectangles here
	IntersectionResult ir = getIntersection(&r1, &r2);
	if (ir.intersect) {
		IntersectionResult irCopy = ir;
		float32 copyDt = deltaTimeSeconds;
		
		do {
		    r1.restorePreviousBody();
			r2.restorePreviousBody();
				
			ir = irCopy;
			copyDt = copyDt /= 2.f;

			r1.update(copyDt);
		    r2.update(copyDt);
				
			irCopy = getIntersection(&r1, &r2);

			if (copyDt <= 0.f) {
				printf("Error: Should not be happening.\n");
				break;
			}

		} while (irCopy.intersect);

		printf("Found intersection at timestamp: %f\n", copyDt);

		resolveCollision(&r1.body, &r2.body, &ir);
		float32 frameTimeRemaining = deltaTimeSeconds - copyDt;

		r1.update(frameTimeRemaining);
	    r2.update(frameTimeRemaining);
	}

	// Keep within the bounds
	handleCollisionWithWall(&r1);
	handleCollisionWithWall(&r2);
	
	// Renderer
	renderer.render();
    r1.render(&renderer);
	r2.render(&renderer);
}

void unload() {
    mainLoop.stop();
    renderer.unload();
    r1.unload();
	r2.unload();
}

//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Play clicked\n");
    
    load();
    return true;
}

EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
    printf("Stop clicked\n");
    unload();
    return true;
}