summaryrefslogtreecommitdiff
path: root/2d/softbody/softbody_2/SpringRectangle.h
blob: 2965efa3424115a5695bfc82523a88ebf153b245 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include "../../../shared_cpp/Renderer2d.h"
#include "../../../shared_cpp/types.h"
#include "../../../shared_cpp/mathlib.h"

struct PointMassUpdateData {
	int32 index = 0;
	Vector2 restingPosition;  // Position is in world coordinates
	Vector2 currentPosition;  // Position is in world coordinates
	Vector2 velocity;
	Vector2 acceleration;
	Vector2 force;
	bool isHovered = false;

	PointMassUpdateData* neighbors[4];
};

struct SoftbodyRectangle {
	// User defined
	float32 width = 200;
	float32 height = 200;
	int32 springDensity = 16;
	float32 k = 10000000.f; // in N /m
	float32 c = 9000.f;
	float32 jointMassKg = 10.f;
	float32 floorPosition = 0;

	// Calculated before runtime
    Vector2 springDimensions;

	// Runtime data
	PointMassUpdateData* updateData = NULL;

	// Render data
	Mesh2d mesh;
	Mesh2d pointsMesh;
	Mesh2d floorMesh;
	Vertex2d* vertices = NULL;
	Vertex2d* pointsVertices = NULL;

	void load(Renderer2d* renderer) {
	    auto defaultPosition = Vector2(800 / 2 - width / 2, 400);
		springDimensions = Vector2(width / springDensity, height / springDensity);
	    int32 numVertices = springDensity * springDensity; // Each subdivision is a square.
		int32 numIndices = 6 * ((springDensity - 1) * (springDensity - 1));
	    vertices = new Vertex2d[numVertices];
		updateData = new PointMassUpdateData[numVertices];
		pointsVertices = new Vertex2d[numVertices];
		auto indices = new GLuint[numIndices];

		// -- Load a square with the desired density
		int32 vIdx = 0;
		int32 iIdx = 0;
		float32 inverseDensity = 1.f / springDensity;
		float32 halfInv = inverseDensity / 2.f;
		for (int32 y = 0; y < springDensity; y++) {  // Rows
			for (int32 x = 0; x < springDensity; x++) { // Columns
			    Vector2 vpos = Vector2(x * inverseDensity - halfInv, y * inverseDensity- halfInv);
				vpos.x = vpos.x * width + defaultPosition.x;
				vpos.y = vpos.y * height + defaultPosition.y;
				vertices[vIdx] = { vpos, Vector4(1, 0, 0, 1) };

				updateData[vIdx].index = vIdx;
				updateData[vIdx].restingPosition = vpos;
				updateData[vIdx].currentPosition = vpos;
				updateData[vIdx].force = Vector2(0, 0);
				updateData[vIdx].velocity = Vector2(0, 0);
				updateData[vIdx].acceleration = Vector2(0, 0);

				if (x != springDensity - 1) updateData[vIdx].neighbors[0] = &updateData[vIdx + 1]; // Right
				else                        updateData[vIdx].neighbors[0] = NULL;
				if (y != springDensity - 1) updateData[vIdx].neighbors[1] = &updateData[vIdx + springDensity]; // Bottom
				else                        updateData[vIdx].neighbors[1] = NULL;
				if (x != 0)                 updateData[vIdx].neighbors[2] = &updateData[vIdx - 1]; // Left
				else                        updateData[vIdx].neighbors[2] = NULL;
				if (y != 0)                 updateData[vIdx].neighbors[3] = &updateData[vIdx - springDensity]; // Top
				else                        updateData[vIdx].neighbors[3] = NULL;
				

				if (y != springDensity - 1 && x != springDensity - 1) {
					indices[iIdx++] = vIdx;
					indices[iIdx++] = vIdx + 1;
					indices[iIdx++] = vIdx + springDensity;
					indices[iIdx++] = vIdx + springDensity;
					indices[iIdx++] = vIdx + springDensity + 1;
					indices[iIdx++] = vIdx + 1;
				}

				pointsVertices[vIdx].position = vpos;
				pointsVertices[vIdx].color = Vector4(0, 0, 0, 1);
				
				vIdx++;
			}
		}

		mesh.load(vertices, numVertices, indices, numIndices, renderer, GL_DYNAMIC_DRAW);
		pointsMesh.load(pointsVertices, numVertices, renderer, GL_DYNAMIC_DRAW);
		delete [] indices;

		// -- Load the floor line;
		Vector2 floorDimensions = Vector2(renderer->context->width, 8);
	    floorPosition = 100.f;
		Vector4 floorColor = Vector4(0.5, 0.5, 0.5, 1);
	    Vertex2d floorVertices[6];
	    floorVertices[0] = { Vector4(0, floorPosition, 0, 1), floorColor };
		floorVertices[1] = { Vector4(floorDimensions.x, floorPosition, 0, 1), floorColor };
		floorVertices[2] = { Vector4(0, floorPosition - floorDimensions.y, 0, 1), floorColor };
		floorVertices[3] = { Vector4(0, floorPosition - floorDimensions.y, 0, 1), floorColor };
		floorVertices[4] = { Vector4(floorDimensions.x, floorPosition - floorDimensions.y, 0, 1), floorColor };
		floorVertices[5] = { Vector4(floorDimensions.x, floorPosition, 0, 1), floorColor };
		floorMesh.load(floorVertices, 6, renderer);
	}

	Vector2 getForceBetweenPointMasses(PointMassUpdateData* first, PointMassUpdateData* second) {
		auto relativeVelocity = second->velocity - first->velocity;
		auto restLength = (second->restingPosition - first->restingPosition).length();
		auto relativePosition = second->currentPosition - first->currentPosition;
		auto currentLength = relativePosition.length();
		auto positionDir = relativePosition.normalize();
		auto velDotProduct = positionDir.dot(relativeVelocity);
		auto accelDotProduct = positionDir.dot(second->acceleration - first->acceleration);
	    float32 springForce = k * (currentLength - restLength);
        float32 dampingForce = c * velDotProduct;
		float32 accelerationForce = jointMassKg * accelDotProduct;
        float32 totalForce = accelerationForce + springForce + dampingForce;

        return positionDir * totalForce;
	}

	void update(float32 dtSeconds) {
	    for (int32 v = 0; v < pointsMesh.numVertices; v++) {
			auto pointMass = &updateData[v];

			// -- Add the forces from it's neighbors. Note that we only do the first two
			// neighbors, which are the right and bottom neighbors.
			for (int32 n = 0; n < 2; n++) {
				auto neighbor = pointMass->neighbors[n];
				if (neighbor == NULL) continue;

				auto forceBetween = getForceBetweenPointMasses(pointMass, neighbor);
				pointMass->force = pointMass->force + forceBetween;
				neighbor->force = neighbor->force- forceBetween;
			}
		}

		// -- Update the local position of each vertex.
		for (int32 v = 0; v < pointsMesh.numVertices; v++) {
			auto pointMass = &updateData[v];
			auto prevPos = pointMass->currentPosition;
			
			// -- Gravity
			Vector2 g =  Vector2(0, -9.8 * jointMassKg) * dtSeconds;

			// -- Euler integration to find the current velocity and position
			pointMass->acceleration = (pointMass->force / jointMassKg) * dtSeconds;
			pointMass->velocity = pointMass->velocity + pointMass->acceleration * dtSeconds + g;
			pointMass->restingPosition = pointMass->restingPosition + g * dtSeconds;
			pointMass->currentPosition = pointMass->currentPosition + (pointMass->velocity * dtSeconds);

			pointMass->force = Vector2(0, 0); // Reset the force for the next update

			particleFloorCollision(pointMass, prevPos, dtSeconds);

			// -- Collision detection
			const float32 COLLISION_DISTANCE = 0.3f;
			for (int32 n = 0; n < 4; n++) {
				auto neighbor = pointMass->neighbors[n];
				if (neighbor == NULL) continue;

				if ((neighbor->currentPosition - pointMass->currentPosition).length() < COLLISION_DISTANCE) {
					auto positionNormal = (neighbor->currentPosition - pointMass->currentPosition).normalize();
					pointMass->currentPosition = neighbor->currentPosition - positionNormal * COLLISION_DISTANCE;
					float32 dotProduct = pointMass->velocity.dot(positionNormal);
					pointMass->velocity = pointMass->velocity - positionNormal * (2 * dotProduct);
				}
			}
			
			vertices[v].position = pointMass->currentPosition;
			pointsVertices[v].position = pointMass->currentPosition;
		}


		// -- Update vertices
		mesh.updateVertices(vertices);
		pointsMesh.updateVertices(pointsVertices);
	}

    void particleFloorCollision(PointMassUpdateData* ud, Vector2 prevPos, float32 dtSeconds) {
	    // We assume that the floor is always horizontal for this simulation
	    auto dotProduct = ud->velocity.dot(Vector2(0, 1));
		if (dotProduct >= 0) {
			return; // Not moving in the same direction
		}

		if (ud->currentPosition.y - floorPosition < 0.1f) {
			// Find the point in the simulation at which we began intersecting, and then reflect.
			Vector2 newPosition;
			do {
				dtSeconds = dtSeconds - 0.02f;
			    newPosition = prevPos + ud->velocity * dtSeconds;
			} while (newPosition.y < floorPosition);
			
		    ud->currentPosition = newPosition;
		    ud->velocity = (ud->velocity - Vector2(0, 1) * (2 * dotProduct)) * 0.5f;
		}
	}

	void render(Renderer2d* renderer) {
		mesh.render(renderer);
		pointsMesh.render(renderer, GL_POINTS);
		floorMesh.render(renderer);
	}

	void unload() {
		mesh.unload();
		pointsMesh.unload();
		delete [] vertices;
		delete [] pointsVertices;
	}
};