1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
#include "../../shared_cpp/Renderer3d.h"
#include "../../shared_cpp/RenderShared.h"
#include "../../shared_cpp/Camera3d.h"
#include "../../shared_cpp/types.h"
#include "../../shared_cpp/WebglContext.h"
#include "../../shared_cpp/mathlib.h"
#include "../../shared_cpp/MainLoop.h"
#include <cstdio>
#include <cmath>
#include <emscripten/html5.h>
#include <unistd.h>
#include <pthread.h>
#include <cmath>
#include <cfloat>
// -- Rigidbody updates
struct Impulse {
Vector3 force = { 0, 0, 0 };
Vector3 pointOfApplication = { 0, 0, 0 };
float32 timeOfApplicationSeconds = 0.016f;
float32 timeAppliedSeconds = 0.f;
bool isDead = false;
};
const int32 MAX_IMPULSES = 4;
struct Rigidbody3d {
int32 numImpulses = 0;
Impulse activeImpulses[MAX_IMPULSES];
Vector3 velocity;
Vector3 position;
float32 mass = 1.f;
Vector3 rotationalVelocity;
Quaternion rotation;
float32 momentOfInertia = 1.f;
float32 cofOfRestitution = 1.f;
void reset() {
numImpulses = 0;
velocity = Vector3();
rotationalVelocity = Vector3();
position = Vector3();
rotation = Quaternion();
}
void applyImpulse(Impulse i) {
if (numImpulses > MAX_IMPULSES) {
printf("Unable to apply impulse. Buffer full.\n");
return;
}
activeImpulses[numImpulses] = i;
numImpulses++;
}
void update(float32 deltaTimeSeconds) {
// Apply gravity
velocity += (Vector3 { 0.f, -9.8f, 0.f } * deltaTimeSeconds);
Vector3 force = { 0.f, 0.f, 0.f };
Vector3 torque = { 0.f, 0.f, 0.f };
for (int32 idx = 0; idx < numImpulses; idx++) {
Impulse& i = activeImpulses[idx];
float32 nextTimeAppliedSeconds = i.timeAppliedSeconds + deltaTimeSeconds;
if (nextTimeAppliedSeconds >= i.timeOfApplicationSeconds) {
nextTimeAppliedSeconds = i.timeOfApplicationSeconds;
i.isDead = true;
}
float32 impulseDtSeconds = nextTimeAppliedSeconds - i.timeAppliedSeconds;
Vector3 forceToApply = i.force * (impulseDtSeconds / i.timeOfApplicationSeconds);
force += forceToApply;
torque += i.pointOfApplication.cross(force).dot(forceToApply);
i.timeAppliedSeconds = nextTimeAppliedSeconds;
}
Vector3 acceleration = force / mass;
velocity += (acceleration * deltaTimeSeconds);
position += (velocity * deltaTimeSeconds);
Vector3 rotationalAcceleration = torque / momentOfInertia;
rotationalVelocity += (rotationalAcceleration * deltaTimeSeconds);
Vector3 drDt = rotationalVelocity * deltaTimeSeconds;
Quaternion rotationVelocityQuat = quaternionFromRotation(Vector3(1, 0, 0), drDt.x)
* quaternionFromRotation(Vector3(0, 1, 0), drDt.y)
* quaternionFromRotation(Vector3(0, 0, 1), drDt.z);
rotation = rotation * rotationVelocityQuat;
for (int32 idx = 0; idx < numImpulses; idx++) {
if (activeImpulses[idx].isDead) {
for (int j = idx + 1; j < numImpulses; j++) {
activeImpulses[j - 1] = activeImpulses[j];
}
idx = idx - 1;
numImpulses--;
}
}
}
};
// -- Sphere definition
float32 bounds = 50.f;
struct Sphere {
Mesh3d mesh;
Rigidbody3d previousBody;
Rigidbody3d body;
float32 radius = 1.f;
void load(Renderer3d* renderer) {
const float32 angleIncrements = 2.f;
const int32 numFaces = static_cast<int32>((180.f / angleIncrements + 1) * (360.f / angleIncrements + 1));
const int32 numVertices = 4.f * numFaces;
const int32 numIndices = 6 * numFaces;
Vertex3d* vertices = new Vertex3d[numVertices];
GLuint* indices = new GLuint[numIndices];
radius = body.mass; // Set the radius to be proportional to the mass
// Generate vertices and indices
GLint index = 0;
int32 vidx = 0;
int32 iidx = 0;
for (float phi = 0.0; phi <= 180; phi += angleIncrements) {
const auto cosPhi = cos(DEG_TO_RAD(phi));
const auto sinPhi = sin(DEG_TO_RAD(phi));
const auto nextCosPhi = cos(DEG_TO_RAD(phi + angleIncrements));
const auto nextSinPhi = sin(DEG_TO_RAD(phi + angleIncrements));
for (float theta = 0.0; theta <= 360; theta += angleIncrements) {
auto color = colorFromHex(randomFloatBetween(0.f, 255.f), randomFloatBetween(0.f, 255.f), randomFloatBetween(0.f, 255.f), 255.f);
const auto cosTheta = cos(DEG_TO_RAD(theta));
const auto sinTheta = sin(DEG_TO_RAD(theta));
const auto nextSinTheta = sin(DEG_TO_RAD(theta + angleIncrements));
const auto nextCosTheta = cos(DEG_TO_RAD(theta + angleIncrements));
// Top Left Point
auto topLeftPoint = Vector3(radius * sinPhi * cosTheta, radius * sinPhi * sinTheta, radius * cosPhi);
auto topLeftIdx = index++;
vertices[vidx++] = { topLeftPoint, topLeftPoint.normalize(), color };
// Bottom Left Point
auto bottomLeftPoint = Vector3(radius * nextSinPhi * cosTheta, radius * nextSinPhi * sinTheta, radius * nextCosPhi);
auto bottomLeftIdx = index++;
vertices[vidx++] = { bottomLeftPoint, bottomLeftPoint.normalize(), color };
// Bottom Right Point
auto bottomRightPoint = Vector3(radius * nextSinPhi * nextCosTheta, radius * nextSinPhi * nextSinTheta, radius * nextCosPhi);
auto bottomRightIdx = index++;
vertices[vidx++] = { bottomRightPoint, bottomRightPoint.normalize(), color };
// Top Right Point
auto topRightPoint = Vector3(radius * sinPhi * nextCosTheta, radius * sinPhi * nextSinTheta, radius * cosPhi);
auto topRightIdx = index++;
vertices[vidx++] = { topRightPoint, topRightPoint.normalize(), color };
indices[iidx++] = (topLeftIdx);
indices[iidx++] = (bottomLeftIdx);
indices[iidx++] = (bottomRightIdx);
indices[iidx++] = (bottomRightIdx);
indices[iidx++] = (topLeftIdx);
indices[iidx++] = (topRightIdx);
}
}
mesh.load(vertices, numVertices, indices, numIndices, renderer);
body.momentOfInertia = (2.f / 5.f) * (body.mass * (radius * radius));
delete [] vertices;
delete [] indices;
}
void update(float32 dtSeconds) {
previousBody = body;
body.update(dtSeconds);
Vector3 upper = body.position + Vector3(radius, radius, radius);
Vector3 lower = body.position - Vector3(radius, radius, radius);
// -- Constrain inside of the box
if (upper.x > bounds) {
body.position.x = bounds - radius;
body.velocity.x = -body.velocity.x;
}
else if (lower.x < -bounds) {
body.position.x = -bounds + radius;
body.velocity.x = -body.velocity.x;
}
if (upper.y > bounds) {
body.position.y = bounds - radius;
body.velocity.y = -body.velocity.y;
}
else if (lower.y < -bounds) {
body.position.y = -bounds + radius;
body.velocity.y = -body.velocity.y;
}
if (upper.z > bounds) {
body.position.z = bounds - radius;
body.velocity.z = -body.velocity.z;
}
else if (lower.z < -bounds) {
body.position.z = -bounds + radius;
body.velocity.z = -body.velocity.z;
}
mesh.model = body.rotation.toMatrix().translate(body.position);
}
void render(Renderer3d* renderer) {
mesh.render(renderer);
}
void unload() {
body.reset();
mesh.unload();
}
};
struct Cube {
Mesh3d mesh;
void load(Renderer3d* renderer) {
Vertex3d vertices[8];
GLuint indices[] = {
2, 6, 7, 2, 7, 3,
6, 4, 5, 6, 5, 7,
4, 0, 1, 4, 1, 5,
0, 4, 6, 0, 6, 2,
1, 5, 7, 1, 7, 3,
};
vertices[0].position = Vector3(-1.f, 1.f, 1.f);
vertices[1].position = Vector3(-1.f, -1.f, 1.f);
vertices[2].position = Vector3(1.f, 1.f, 1.f);
vertices[3].position = Vector3(1.f, -1.f, 1.f);
vertices[4].position = Vector3(-1.f, 1.f, -1.f);
vertices[5].position = Vector3(-1.f, -1.f, -1.f);
vertices[6].position = Vector3(1.f, 1.f, -1.f);
vertices[7].position = Vector3(1.f, -1.f, -1.f);
for (int idx = 0; idx < 8; idx++) {
vertices[idx].normal = Vector3(0, 1, 0);
vertices[idx].color = Vector4(randomFloatBetween(0, 1), randomFloatBetween(0, 1), randomFloatBetween(0, 1), 0.9f).normalize();
}
mesh.load(vertices, 8, indices, 30, renderer);
float32 scale = bounds;
mesh.model = Mat4x4().scale(Vector3(scale, scale, scale));//.translate(Vector3(0, 0, scale / 2.f));
}
void render(Renderer3d* renderer) {
mesh.render(renderer);
}
void unload() {
mesh.unload();
}
};
// -- Intersection info
struct IntersectionResult {
bool intersect = false;
Vector3 collisionNormal;
Vector3 relativeVelocity;
Vector3 firstPointOfApplication;
Vector3 secondPointOfApplication;
};
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
EM_BOOL onForceApplicationRequested(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData);
void load();
IntersectionResult getIntersection(Sphere* first, Sphere* second);
void resolveIntersection(Rigidbody3d* first, Rigidbody3d* second, IntersectionResult* ir);
void update(float32 time, void* userData);
void unload();
WebglContext context;
Renderer3d renderer;
Camera3d camera;
MainLoop mainLoop;
bool isIntersectingPointer = false;
const int32 numSpheres = 3;
Sphere sphereList[numSpheres];
Cube environmentCube;
int main() {
context.init("#gl_canvas");
emscripten_set_click_callback("#gl_canvas_play", NULL, false, onPlayClicked);
emscripten_set_click_callback("#gl_canvas_stop", NULL, false, onStopClicked);
emscripten_set_click_callback("#force_apply", NULL, false, onForceApplicationRequested);
return 0;
}
void load() {
renderer.load(&context);
sphereList[0].body.mass = 10.f;
sphereList[0].body.position = Vector3(10.f, 0, -5);
sphereList[0].body.velocity = Vector3(-10.f, 10.f, 10.f);
sphereList[0].body.rotationalVelocity = Vector3(1.f, 1.f, 1.f);
sphereList[0].load(&renderer);
sphereList[1].body.mass = 6.f;
sphereList[1].body.position = Vector3(-10.f, 0, 5);
sphereList[1].body.velocity = Vector3(10.f, -10.f, -10.f);
sphereList[1].body.rotationalVelocity = Vector3(1.f, 1.f, 1.f);
sphereList[1].load(&renderer);
sphereList[2].body.mass = 3.f;
sphereList[2].body.position = Vector3(-10.f, -10, 5);
sphereList[2].body.velocity = Vector3(10.f, 0.f, -10.f);
sphereList[2].body.rotationalVelocity = Vector3(1.f, 1.f, 1.f);
sphereList[2].load(&renderer);
environmentCube.load(&renderer);
camera.projection = Mat4x4().getPerspectiveProjection(0.1f, 10000.f, DEG_TO_RAD(45.f), 800.f / 600.f);
camera.view = Mat4x4().translate({ 0, 0, -175.f });
mainLoop.run(update);
}
IntersectionResult getIntersection(Sphere* first, Sphere* second) {
IntersectionResult ir;
auto distance = (first->body.position - second->body.position).length();
if (distance <= first->radius + second->radius) {
ir.intersect = true;
}
else {
ir.intersect = false;
return ir;
}
auto positionDiff = first->body.position - second->body.position;
auto positionDirection = positionDiff.normalize();
ir.relativeVelocity = first->body.velocity - second->body.velocity;
ir.firstPointOfApplication = positionDirection * first->radius;
ir.secondPointOfApplication = positionDirection * second->radius;
ir.collisionNormal = (positionDirection + ir.relativeVelocity.negate().normalize()).normalize();
return ir;
}
void resolveIntersection(Rigidbody3d* first, Rigidbody3d* second, IntersectionResult* ir) {
Vector3 relativeVelocity = ir->relativeVelocity;
Vector3 collisionNormal = ir->collisionNormal;
Vector3 firstPerp = ir->firstPointOfApplication.cross(relativeVelocity);
Vector3 secondPerp = ir->secondPointOfApplication.cross(relativeVelocity);
float32 firstPerpNorm = firstPerp.dot(collisionNormal);
float32 sndPerpNorm = secondPerp.dot(collisionNormal);
float32 cofOfRestitution = (first->cofOfRestitution + second->cofOfRestitution) / 2.f;
float32 numerator = (relativeVelocity * (-1 * (1.f + cofOfRestitution))).dot(collisionNormal);
float32 linearDenomPart = collisionNormal.dot(collisionNormal * (1.f / first->mass + 1.f / second->mass));
float32 rotationalDenomPart = (firstPerpNorm * firstPerpNorm) / first->momentOfInertia + (sndPerpNorm * sndPerpNorm) / second->momentOfInertia;
float32 impulseMagnitude = numerator / (linearDenomPart + rotationalDenomPart);
first->velocity = first->velocity + (collisionNormal * (impulseMagnitude / first->mass));
second->velocity = second->velocity - (collisionNormal * (impulseMagnitude / second->mass));
first->rotationalVelocity = first->rotationalVelocity + firstPerp.dot(collisionNormal * impulseMagnitude) / first->momentOfInertia;
second->rotationalVelocity = second->rotationalVelocity - secondPerp.dot(collisionNormal * impulseMagnitude) / second->momentOfInertia;
}
void update(float32 deltaTimeSeconds, void* userData) {
// -- Update
for (int32 idx = 0; idx < numSpheres; idx++) {
sphereList[idx].update(deltaTimeSeconds);
}
// -- Check collisions
for (int32 idx = 0; idx < numSpheres; idx++) {
auto first = &sphereList[idx];
for (int32 otherIdx = idx + 1; otherIdx < numSpheres; otherIdx++) {
auto second = &sphereList[otherIdx];
auto ir = getIntersection(first, second);
if (!ir.intersect) { continue; }
// Find out where the intersection took place. We will rewind the simulation
// until the spheres are no longer intersecting.
const float32 numDtSubdivision = 8.f;
const float32 subdivisionSeconds = deltaTimeSeconds / numDtSubdivision;
int32 currentDtSubdivision = 1.f;
IntersectionResult tempIr = ir;
do {
ir = tempIr;
// Restore the bodies to the point before the collision happened
first->body = first->previousBody;
second->body = second->previousBody;
// Subdivide the timestep to get a more granular intersection result
float32 currentUpdateStep = deltaTimeSeconds - (currentDtSubdivision * subdivisionSeconds);
first->update(currentUpdateStep);
second->update(currentUpdateStep);
tempIr = getIntersection(first, second);
currentDtSubdivision++;
} while (tempIr.intersect);
// Exact intersection point is found. Now we can solve it
resolveIntersection(&first->body, &second->body, &ir);
}
}
// -- Render
renderer.render(&camera);
for (int32 idx = 0; idx < numSpheres; idx++) {
sphereList[idx].render(&renderer);
}
environmentCube.render(&renderer);
}
void unload() {
mainLoop.stop();
renderer.unload();
for (int32 idx = 0; idx < numSpheres; idx++) {
sphereList[idx].unload();
}
environmentCube.unload();
}
//
// Interactions with DOM handled below
//
EM_BOOL onPlayClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Play clicked\n");
load();
return true;
}
EM_BOOL onStopClicked(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Stop clicked\n");
unload();
return true;
}
EM_BOOL onForceApplicationRequested(int eventType, const EmscriptenMouseEvent* mouseEvent, void* userData) {
printf("Force applied\n");
Impulse base;
base.force = { 0, 10000, 0 };
base.pointOfApplication = { -15, -15, 0 };
for (int32 idx = 0; idx < numSpheres; idx++) {
sphereList[idx].body.applyImpulse(base);
}
return true;
}
|