summaryrefslogtreecommitdiff
path: root/frontend/_rigidbody/rigidbody_2.js
blob: c878c1abf762b93e7bd2746a9b80277f696f46a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/// <reference path="../scripts/jquery-3.5.1.min.js"/>
/// <reference path="vec2.js" />
/// <reference path="mat4.js" />
/// <reference path="shader.js" />
/// <reference path="circle.js" />

(function() {
    function main() {
        // Define Constants
        const CIRCLE_RADIUS = 16;
        const GRAVITY = 9.8;
    
        // Retrieve context
        const lProgramContext = getContext('#rigidbody_2');
    
        if (lProgramContext.gl === null) {
            console.error('Unable to initialize WebGL. Your browser or machine may not support it.');
            return;
        }
    
        lProgramContext.gl.clearColor(0.0, 0.0, 0.0, 1.0);
        lProgramContext.gl.clear(lProgramContext.gl.COLOR_BUFFER_BIT);
    
        function run() {
            console.log('Running Rigid Body 2');
            lProgramContext.load().then(function(pProgramInfo) {
                const lCircle = circle(lProgramContext.gl, CIRCLE_RADIUS, 30, [
                        { x: 1, y: 1, z: 0, w: 1 },
                        { x: 1, y: 0, z: 1, w: 1 },
                        { x: 0, y: 1, z: 1, w: 1 },
                        { x: 0, y: 1, z: 0, w: 1 }
                    ], vec2(lProgramContext.width / 2.0, lProgramContext.height / 2.0));
    
                function update(pDeltaTimeSeconds) {
                    // Same physics updates from part 1
                    applyForce(vec2(0, -1.0 * (lCircle.mass * GRAVITY)));
                    const lCurrentAcceleration = scaleVec2(lCircle.force, 1.0 / lCircle.mass);
                    lCircle.velocity = addVec2(lCircle.velocity, scaleVec2(lCurrentAcceleration, pDeltaTimeSeconds));
                    lCircle.position = addVec2(lCircle.position, scaleVec2(lCircle.velocity, pDeltaTimeSeconds));
                    lCircle.force = vec2();
    
                    // Angular code starts here
    
                    // Retrieve the moment of inertia for our shape (Ours is a circle by default)
                    const lMomentOfInertia = getMomentOfInertia(lCircle);
    
                    // Calculate the angular acceperation (omega = T / I)
                    const lAngularAcceleration = lCircle.torque / lMomentOfInertia;
    
                    // Calculate the rotation in radians
                    lCircle.rotationVelocity += lAngularAcceleration * pDeltaTimeSeconds;
                    lCircle.rotationRadians += lCircle.rotationVelocity * pDeltaTimeSeconds;
                    lCircle.torque = 0;
    
                    // Calculate the model as previously, but this time, also rotate it
                    lCircle.model = rotateMatrix2d(translateMatrix(mat4(), lCircle.position.x, lCircle.position.y, 0), lCircle.rotationRadians);
                    
                    // Render Code only
                    lProgramContext.gl.clearColor(0.0, 0.0, 0.0, 1.0);
                    lProgramContext.gl.clearDepth(1.0);
                    lProgramContext.gl.enable(lProgramContext.gl.DEPTH_TEST);
                    lProgramContext.gl.depthFunc(lProgramContext.gl.LEQUAL);
                    lProgramContext.gl.clear(lProgramContext.gl.COLOR_BUFFER_BIT | lProgramContext.gl.DEPTH_BUFFER_BIT);
    
                    lProgramContext.gl.useProgram(pProgramInfo.program);
                    lProgramContext.gl.uniformMatrix4fv(pProgramInfo.uniformLocations.projection, false, lProgramContext.perspective);
                    lProgramContext.gl.uniformMatrix4fv(pProgramInfo.uniformLocations.model, false, lCircle.model);
    
                    renderCircle(lProgramContext.gl, pProgramInfo, lCircle);
                }
    
                const TORQUE_MULTIPLIER = 100.0; // TODO: This may be unncessary
    
                function applyForce(pForceVector, pPointOfApplication) {
                    if (pPointOfApplication !== undefined) {
                        const lOriginToPointOfApp = subVec2(vec2(), pPointOfApplication),   // The point of application is relative to the model (i.e. the center of the circle, not the scene)
                            lPerpVec = vec2(-lOriginToPointOfApp.y, lOriginToPointOfApp.x); // Retrieve the perpendicular vector
        
                        // Calculate the torque from the perp dot (T = r_perp . F)
                        lCircle.torque += TORQUE_MULTIPLIER * dot2(lPerpVec, pForceVector);
                    }
    
                    lCircle.force = addVec2(lCircle.force, pForceVector);
                }
    
                function cleanup() {
                    lProgramContext.gl.deleteBuffer(lCircle.buffer);
                    lProgramContext.gl.deleteProgram(pProgramInfo.program);
                    lProgramContext.gl.clearColor(0.0, 0.0, 0.0, 1.0);
                    lProgramContext.gl.clear(lProgramContext.gl.COLOR_BUFFER_BIT);
                }
    
                function reset() {
                    lExitRequestFunc();
                    lProgramContext.reset();
                    $('#rigidbody_2_force_submit_button').unbind('submit').submit(false);
                }
    
                const lExitRequestFunc = requestUpdateLoop(update, cleanup);
                lProgramContext.stopButton.on('click', reset);
                $('#rigidbody_2_force_submit_button').submit(function(pEv) {
                    pEv.preventDefault();
                    pEv.stopPropagation();
    
                    // Read in the force vector from the form
                    const lForceGroup = $('#rigidbody_2_force_input'),
                        lPositionGroup = $('#rigidbody_2_position_input');
    
                    let lForceVectorX = lForceGroup.find('.vec2_x_input').val(),
                        lForceVectorY = lForceGroup.find('.vec2_y_input').val();
    
                    if (lForceVectorX.length === 0) {
                        lForceVectorX = 0;
                    }
    
                    if (lForceVectorY.length === 0) {
                        lForceVectorY = 5000;
                    }
    
                    // Read in the point of application vector from the form
                    let lPositionGroupX = lPositionGroup.find('.vec2_x_input').val(),
                        lPositionGroupY = lPositionGroup.find('.vec2_y_input').val();
    
                    if (lPositionGroupX.length === 0) {
                        lPositionGroupX = -Math.sqrt(2) / 2;
                    }
    
                    if (lPositionGroupY.length === 0) {
                        lPositionGroupY = -Math.sqrt(2) / 2;
                    }
    
                    const lForceVector = vec2(Number(lForceVectorX), Number(lForceVectorY));
                    const lPointOfApplication = scaleVec2(normalize2(vec2(Number(lPositionGroupX), Number(lPositionGroupY))), lCircle.radius);
    
                    applyForce(lForceVector, lPointOfApplication);
                });
            });
        }
        
        lProgramContext.playButton.on('click', run);
        $('#rigidbody_2_force_submit_button').submit(false);
    }
    
    $(document).ready(main);
})()