1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
#pragma once
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define ABS(x) (x < 0 ? -x : x)
#define SIGN(x) (x < 0 ? -1 : 1)
struct Vector2 {
float x = 0;
float y = 0;
Vector2 operator+(Vector2 other) {
return { x + other.x, y + other.y };
}
Vector2& operator+=(Vector2 other) {
x += other.x;
y += other.y;
return *this;
}
Vector2 operator-(Vector2 other) {
return { x - other.x, y - other.y };
}
Vector2 operator*(float s) {
return { x * s, y * s };
}
Vector2 operator/(float s) {
return { x / s, y / s };
}
float dot(Vector2 other) {
return x * other.x + y * other.y;
}
float length() {
return sqrtf(x * x + y * y);
}
Vector2 normalize() {
float len = length();
float inverseLength = len == 0 ? 1.0 : 1.0 / len;
return { x * inverseLength, y * inverseLength };
}
Vector2 negate() {
return { -x, -y };
}
Vector2 getPerp() {
return { y, -x };
}
Vector2 rotate(float angle) {
return {
x * cosf(angle) - y * sinf(angle),
x * sinf(angle) + y * cosf(angle)
};
}
void printDebug(const char* name) {
printf("%s=Vector2(%f, %f)\n", name, x, y);
}
float determinant(Vector2 other) {
//
// [ a b ]
// [ c d ]
//
// [ x other.x ]
// [ y other.y ]
//
// det = a * d - b * c
// det = x * other.y - other.x * y
//
return x * other.y - other.x * y;
}
};
struct Vector3 {
float x = 0.f;
float y = 0.f;
float z = 0.f;
float length() {
return sqrtf(x * x + y * y + z * z);
}
Vector3 operator+(const Vector3& other) {
return { x + other.x, y + other.y, z + other.z };
}
};
struct Vector4 {
float x = 0.f;
float y = 0.f;
float z = 0.f;
float w = 0.f;
float length() {
return sqrtf(x * x + y * y + z * z + w * w);
}
Vector4 normalize() {
float len = length();
float inverseLength = len == 0 ? 1.0 : 1.0 / len;
return { x * inverseLength, y * inverseLength, z * inverseLength, w * inverseLength };
}
Vector4 fromColor(float r, float g, float b, float a) {
float scale = 1.f / 255.f;
return { r * scale, g * scale, b * scale, a * scale };
}
Vector4 toNormalizedColor() {
return fromColor(x, y, z, w);
}
};
struct Mat4x4 {
float m[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
Mat4x4 copy() {
Mat4x4 result;
memcpy(result.m, m, sizeof(float) * 16);
return result;
}
Mat4x4 scale(Vector3 v) {
Mat4x4 result = copy();
result.m[0] = result.m[0] * v.x;
result.m[5] = result.m[5] *v.y;
result.m[10] = result.m[10] * v.z;
return result;
}
Mat4x4 translate(Vector3 v) {
Mat4x4 result = copy();
result.m[12] += v.x;
result.m[13] += v.y;
result.m[14] += v.z;
return result;
}
Mat4x4 translateByVec2(Vector2 v) {
Mat4x4 result = copy();
result.m[12] += v.x;
result.m[13] += v.y;
return result;
}
Mat4x4 rotate2D(float angle) {
Mat4x4 result = copy();
result.m[0] = cos(angle);
result.m[1] = -sin(angle);
result.m[4] = sin(angle);
result.m[5] = cos(angle);
return result;
}
Mat4x4 getXRotationMatrix(float angleRadians) {
return {
{ 1, 0, 0, 0,
0, cos(angleRadians), -sin(angleRadians), 0,
0, sin(angleRadians), cos(angleRadians), 0,
0, 0, 0, 1 }
};
}
Mat4x4 getYRotationMatrix(float angleRadians) {
return {
{ cos(angleRadians), 0, sin(angleRadians), 0,
0, 1, 0, 0,
-sin(angleRadians), 0, cos(angleRadians), 0,
0, 0, 0, 1 }
};
}
Mat4x4 getZRotationMatrix(float angleRadians) {
return {
{ cos(angleRadians), -sin(angleRadians), 0, 0,
sin(angleRadians), cos(angleRadians), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 }
};
}
Mat4x4 rotate(float xRadians, float yRadians, float zRadians) {
Mat4x4 result = copy();
Mat4x4 rotationMatrix;
if (xRadians != 0) {
rotationMatrix = getXRotationMatrix(xRadians);
result = result * rotationMatrix;
}
if (yRadians != 0) {
rotationMatrix = getYRotationMatrix(yRadians);
result = result * rotationMatrix;
}
if (zRadians != 0) {
rotationMatrix = getZRotationMatrix(zRadians);
result = result * rotationMatrix;
}
return result;
}
Vector2 multByVec2(Vector2 v) {
Vector4 vec4 = { v.x, v.y, 0.0, 1.0 };
return {
vec4.x * m[0] + vec4.y * m[4] + vec4.z * m[8] + vec4.w * m[12],
vec4.x * m[1] + vec4.y * m[5] + vec4.z * m[9] + vec4.w * m[13]
};
}
Vector2 operator*(Vector2 v) {
return multByVec2(v);
}
Mat4x4 multMat4x4(const Mat4x4& other) {
Mat4x4 result;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
int row = i * 4;
result.m[row + j] = m[row + 0] * other.m[0 + j] + m[row + 1] * other.m[4 + j] + m[row + 2] * other.m[8 + j] + m[row + 3] * other.m[12 + j];
}
}
return result;
}
Mat4x4 operator*(const Mat4x4& other) {
return multMat4x4(other);
}
Mat4x4 getOrthographicMatrix(float left, float right, float bottom, float top) {
Mat4x4 result;
result.m[0] = 2.0 / (right - left);
result.m[5] = 2.0 / (top - bottom);
result.m[10] = 1.0;
result.m[12] = -(right + left) / (right - left);
result.m[13] = -(top + bottom) / (top - bottom);
return result;
}
Mat4x4 inverse() {
Mat4x4 inv;
inv.m[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
inv.m[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
inv.m[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
inv.m[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
inv.m[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
inv.m[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
inv.m[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
inv.m[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
inv.m[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6];
inv.m[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6];
inv.m[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5];
inv.m[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5];
inv.m[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6];
inv.m[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6];
inv.m[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5];
inv.m[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5];
float det = m[0] * inv.m[0] + m[1] * inv.m[4] + m[2] * inv.m[8] + m[3] * inv.m[12];
if (det == 0)
return Mat4x4();
det = 1.f / det;
for (int i = 0; i < 16; i++)
inv.m[i] = inv.m[i] * det;
return inv;
}
Mat4x4 getPerspectiveProjection(float near, float far, float fieldOfViewRadians, float aspectRatio) {
float halfFieldOfView = fieldOfViewRadians * 0.5f;
float top = tan(halfFieldOfView) * near;
float bottom = -top;
float right = top * aspectRatio;
float left = -right;
return {
{ (2 * near) / (right - left), 0, 0, 0,
0, (2 * near) / (top - bottom), 0, 0,
(right + left) / (right - left), (top + bottom) / (top - bottom), -(far + near) / (far - near), -1,
0, 0, (-2 * far * near) / (far - near), 0 }
};
}
void print() {
printf("[ ");
for (int idx = 0; idx < 16; idx++) {
printf("%f, ", m[idx]);
}
printf(" ]\n");
}
};
|